Skip to main content

Publications search

Found 37173 matches. Displaying 1-10
Huynh A, Gray PE, Sullivan A, Mackie J, Guerin A, Rao GT, Pathmanandavel K, Della Mina E, Hollway G, Hobbs M, Enthoven K, O'Young P, McManus S, Wainwright LH, Higgins M, Noon F, Wong M, Bastard P, Zhang Q, Casanova JL, Hsiao KC, Pinzon-Charry A, Ma CS, Tangye SG
Show All Authors

A Novel Case of IFNAR1 Deficiency Identified a Common Canonical Splice Site Variant in DOCK8 in Western Polynesia: The Importance of Validating Variants of Unknown Significance in Under-Represented Ancestries

JOURNAL OF CLINICAL IMMUNOLOGY 2024 AUG; 44(8):? Article 170
Advanced genomic technologies such as whole exome or whole genome sequencing have improved diagnoses and disease outcomes for individuals with genetic diseases. Yet, variants of unknown significance (VUS) require rigorous validation to establish disease causality or modification, or to exclude them from further analysis. Here, we describe a young individual of Polynesian ancestry who in the first 13 mo of life presented with SARS-CoV-2 pneumonia, severe enterovirus meningitis and adenovirus gastroenteritis, and severe adverse reaction to MMR vaccination. Genomic analysis identified a previously reported pathogenic homozygous variant in IFNAR1 (c.1156G > T, p.Glu386* LOF), which is common in Western Polynesia. Moreover, a new and putatively deleterious canonical splice site variant in DOCK8 was also found in homozygosity (c.3234 + 2T > C). This DOCK8 variant is common in Polynesians and other under-represented ancestries in large genomic databases. Despite in silico bioinformatic predictions, extensive in vitro and ex vivo analysis revealed the DOCK8 variant likely be neutral. Thus, our study reports a novel case of IFNAR1 deficiency, but also highlights the importance of functional validation of VUS, including those predicted to be deleterious, and the pressing need to expand our knowledge of the genomic architecture and landscape of under-represented populations and ancestries.
Arango-Franco CA, Rojas J, Firacative C, Migaud M, Agudelo CI, Franco JL, Cas...
Show All Authors

Autoantibodies Neutralizing GM-CSF in HIV-Negative Colombian Patients Infecte...

JOURNAL OF CLINICAL IMMUNOLOGY 2024 OCT; 44(7):? Article 163
Background Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. Methods We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). Results We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. Conclusions We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.
Bonilla SL, Jang K
Show All Authors

Challenges, advances, and opportunities in RNA structural biology by Cryo-EM

CURRENT OPINION IN STRUCTURAL BIOLOGY 2024 OCT; 88(?):? Article 102894
RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure-function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryoelectron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA- only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.
Utsumi T, Tsumura M, Yashiro M, Kato Z, Noma K, Sakura F, Kagawa R, Mizoguchi...
Show All Authors

Exclusive Characteristics of the p.E555K Dominant-Negative Variant in Autosom...

JOURNAL OF CLINICAL IMMUNOLOGY 2024 OCT; 44(7):? Article 167
Purpose Transcription factor 3 (TCF3) encodes 2 transcription factors generated by alternative splicing, E12 and E47, which contribute to early lymphocyte differentiation. In humans, autosomal dominant (AD) E47 transcription factor deficiency is an inborn error of immunity characterized by B-cell deficiency and agammaglobulinemia. Only the recurrent de novo p.E555K pathogenic variant has been associated with this disease and acts via a dominant-negative (DN) mechanism. In this study, we describe the first Asian patient with agammaglobulinemia caused by the TCF3 p.E555K variant and provide insights into the structure and function of this variant. Methods TCF3 variant was identified by inborn errors of immunity-related gene panel sequencing. The variant E555K was characterized by alanine scanning of the E47 basic region and comprehensive mutational analysis focused on position 555. Results The patient was a 25-year-old male with B-cell deficiency, agammaglobulinemia, and mild facial dysmorphic features. We confirmed the diagnosis of AD E47 transcription factor deficiency by identifying a heterozygous missense variant, c.1663 G>A; p.E555K, in TCF3. Alanine scanning of the E47 basic region revealed the structural importance of position 555. Comprehensive mutational analysis focused on position 555 showed that only the glutamate-to-lysine substitution had a strong DN effect. 3D modeling demonstrated that this variant not only abolished hydrogen bonds involved in protein-DNA interactions, but also inverted the charge on the surface of the E47 protein. Conclusions Our study reveals the causative mutation hotspot in the TCF3 DN variant and highlights the weak negative selection associated with the TCF3 gene.
Nagesh PKB, Monette S, Shamu T, Giralt S, St Jean SC, Zhang ZG, Fuks Z, Koles...
Show All Authors

Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute...

INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 2024 OCT 1; 120(2):558-569
Purpose: After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ + stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. Methods and Materials: For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GIARS lethal dose for this mouse strain. Results: Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these fi ndings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, fi ce, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. Conclusions: Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies. (c) 2023 Elsevier Inc. All rights reserved.
Bonilla SL, Jones AN, Incarnato D
Show All Authors

Structural and biophysical dissection of RNA conformational ensembles

CURRENT OPINION IN STRUCTURAL BIOLOGY 2024 OCT; 88(?):? Article 102908
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
Mc Larney BE, Sonay AY, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre...
Show All Authors

A pan-cancer dye for solid-tumour screening, resection and wound monitoring v...

NATURE BIOMEDICAL ENGINEERING 2024 SEP; 8(9):?
The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions. A commercial near-infrared dye that is sensitive to apoptosis and that provides high tumour-to-muscle and tumour-to-liver contrast ratios facilitates fluorescence-guided tumour screening, tumour resection and the assessment of wound healing.
Huber T, Horioka-Duplix M, Chen YH, Saca VR, Ceraudo E, Chen Y, Sakmar TP
Show All Authors

The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte ...

SCIENCE SIGNALING 2024 SEP 17; 17(854):? Article eadp3967
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Agüero R, Buchanan KL, Navarrete-Dechent C, Marghoob AA, Stein JA, Landy MS, ...
Show All Authors

The Impact of Melanoma Imaging Biomarker Cues on Detection Sensitivity and Sp...

CANCERS 2024 SEP; 16(17):? Article 3077
Simple Summary Early detection of melanoma and differentiation from benign nevi can be challenging even for the most experienced dermatologists. To improve melanoma detection, artificial intelligence algorithms incorporating dermoscopy have been developed, but lack transparency and therefore have limited training value for healthcare providers. To address this, an automated approach utilizing imaging biomarker cues (IBCs), logical features extracted from images that mimic expert dermatologists' dermoscopic pattern recognition skills, was developed. This study excluded deep learning approaches to which IBCs are complementary or alternative. Ten participants assessed 78 dermoscopic images (39 melanomas and 39 nevi) first without IBCs and then with IBCs. Using IBCs significantly improved diagnostic accuracy: sensitivity increased significantly from 73.69% to 81.57% (p = 0.0051) and specificity increased from 60.50% to 67.25% (p = 0.059). These results indicate that incorporating IBCs can significantly enhance melanoma diagnosis, with potential implications for improved screening practices. Further research is needed to confirm these findings across a variety of healthcare providers.Abstract Incorporation of dermoscopy and artificial intelligence (AI) is improving healthcare professionals' ability to diagnose melanoma earlier, but these algorithms often suffer from a "black box" issue, where decision-making processes are not transparent, limiting their utility for training healthcare providers. To address this, an automated approach for generating melanoma imaging biomarker cues (IBCs), which mimics the screening cues used by expert dermoscopists, was developed. This study created a one-minute learning environment where dermatologists adopted a sensory cue integration algorithm to combine a single IBC with a risk score built on many IBCs, then immediately tested their performance in differentiating melanoma from benign nevi. Ten participants evaluated 78 dermoscopic images, comprised of 39 melanomas and 39 nevi, first without IBCs and then with IBCs. Participants classified each image as melanoma or nevus in both experimental conditions, enabling direct comparative analysis through paired data. With IBCs, average sensitivity improved significantly from 73.69% to 81.57% (p = 0.0051), and the average specificity improved from 60.50% to 67.25% (p = 0.059) for the diagnosis of melanoma. The index of discriminability (d ') increased significantly by 0.47 (p = 0.002). Therefore, the incorporation of IBCs can significantly improve physicians' sensitivity in melanoma diagnosis. While more research is needed to validate this approach across other healthcare providers, its use may positively impact melanoma screening practices.
Fridy PC, Farrell RJ, Molloy KR, Keegan S, Wang JJ, Jacobs EY, Li YY, Trivedi...
Show All Authors

A new generation of nanobody research tools using improved mass spectrometry-...

JOURNAL OF BIOLOGICAL CHEMISTRY 2024 SEP; 300(9):? Article 107623
Single-domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, therapeutic, and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research- i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat immunoglobulin G. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.