Skip to main content

Publications search

Found 37443 matches. Displaying 1731-1740
Wong JJM, Ginter PS, Tyryshkin K, Yang XJ, Nanayakkara J, Zhou ZE, Tuschl T, Chen YT, Renwick N
Show All Authors

Classifying Lung Neuroendocrine Neoplasms through MicroRNA Sequence Data Mining (opens in new window)

CANCERS 2020 SEP; 12(9):? Article 2653
Show Abstract
Simple Summary Lung neuroendocrine neoplasms (NENs) are a subset of lung cancer that is difficult to diagnose. MicroRNAs (miRNAs) are small RNA molecules that are valuable markers in many cancers. In this study, we generated miRNA profiles for 55 preserved lung NEN samples (14 typical carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell neuroendocrine carcinoma (LCNEC)), and randomly assigned them to either discovery or validation sets. We used machine learning and data mining algorithms to identify important miRNA that can distinguish between the types. Using the miRNAs identified with these algorithms, we were able to distinguish between carcinoids (TC and AC) and neuroendocrine carcinomas (SCLC and LCNEC) in the discovery set with 93% accuracy; in the validation set, we were able to distinguish between these groups with 100% accuracy. Using the same machine learning and data mining techniques, we also identified miRNAs that can distinguish between TC and AC, and SCLC and LCNEC, however more samples are needed to validate these findings. Lung neuroendocrine neoplasms (NENs) can be challenging to classify due to subtle histologic differences between pathological types. MicroRNAs (miRNAs) are small RNA molecules that are valuable markers in many neoplastic diseases. To evaluate miRNAs as classificatory markers for lung NENs, we generated comprehensive miRNA expression profiles from 14 typical carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell neuroendocrine carcinoma (LCNEC) samples, through barcoded small RNA sequencing. Following sequence annotation and data preprocessing, we randomly assigned these profiles to discovery and validation sets. Through high expression analyses, we found that miR-21 and -375 are abundant in all lung NENs, and that miR-21/miR-375 expression ratios are significantly lower in carcinoids (TC and AC) than in neuroendocrine carcinomas (NECs; SCLC and LCNEC). Subsequently, we ranked and selected miRNAs for use in miRNA-based classification, to discriminate carcinoids from NECs. Using miR-18a and -155 expression, our classifier discriminated these groups in discovery and validation sets, with 93% and 100% accuracy. We also identified miR-17, -103, and -127, and miR-301a, -106b, and -25, as candidate markers for discriminating TC from AC, and SCLC from LCNEC, respectively. However, these promising findings require external validation due to sample size.
Saeed M, Kapell S, Hertz NT, Wu XF, Bell K, Ashbrook AW, Mark MT, Zebroski HA, Neal ML, Flodstrom-Tullberg M, MacDonald MR, Aitchison JD, Molina H, Rice CM
Show All Authors

Defining the proteolytic landscape during enterovirus infection (opens in new window)

PLOS PATHOGENS 2020 SEP; 16(9):? Article e1008927
Show Abstract
Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease. Author summary Enteroviruses are associated with a variety of human diseases, including gastroenteritis, the common cold, hand-foot-and-mouth disease, acute hemorrhagic conjunctivitis, and skin rash. In some cases, the infection can lead to myocarditis, encephalitis, progressive muscle weakness, and paralysis. Exactly how enteroviruses invade human tissues, defeat the host immune system, and alter normal cell biology is unknown. Understanding these cellular and molecular mechanisms will blaze the trail for the development of novel vaccine and therapeutic strategies. Here, we have applied a global N-terminomics approach to investigate how various enteroviruses recruit their proteases to remodel an infected cell, disarm host immunity, and create a favorable environment for their replication. This effort identified several new protease substrates, which we then confirmed by other experimental approaches. To our knowledge, this is the first systematic analysis of host proteins targeted for cleavage during enterovirus infection. The data generated in this study will serve as a valuable resource for the research community in the quest to uncover the molecular details of enterovirus cell biology and disease pathogenesis.
Yu ZL, Yu YD, Wang F, Myasnikov AG, Coffino P, Cheng YF
Show All Authors

Allosteric coupling between alpha-rings of the 20S proteasome (opens in new window)

NATURE COMMUNICATIONS 2020 SEP 11; 11(1):? Article 4580
Show Abstract
Proteasomal machinery performs essential regulated protein degradation in eukaryotes. Classic proteasomes are symmetric, with a regulatory ATPase docked at each end of the cylindrical 20S. Asymmetric complexes are also present in cells, either with a single ATPase or with an ATPase and non-ATPase at two opposite ends. The mechanism that populates these different proteasomal complexes is unknown. Using archaea homologs, we construct asymmetric forms of proteasomes. We demonstrate that the gate conformation of the two opposite ends of 20S are coupled: binding one ATPase opens a gate locally, and also opens the opposite gate allosterically. Such allosteric coupling leads to cooperative binding of proteasomal ATPases to 20S and promotes formation of proteasomes symmetrically configured with two identical ATPases. It may also promote formation of asymmetric complexes with an ATPase and a non-ATPase at opposite ends. We propose that in eukaryotes a similar mechanism regulates the composition of the proteasomal population.
Marrocco J
Show All Authors

Bruce S. McEwen: the evolution of stress (opens in new window)

STRESS-THE INTERNATIONAL JOURNAL ON THE BIOLOGY OF STRESS 2020 SEP 2; 23(5):497-498
Show Abstract
Kereiakes DJ, Henry TD, DeMaria AN, Bentur O, Carlson M, Yue CS, Martin LH, Midkiff J, Mueller M, Meek T, Garza D, Gibson CM, Coller BS
Show All Authors

First Human Use of RUC-4: A Nonactivating Second-Generation Small-Molecule Platelet Glycoprotein IIb/IIIa (Integrin alpha IIb beta 3) Inhibitor Designed for Subcutaneous Point-of-Care Treatment of ST-Segment-Elevation Myocardial Infarction (opens in new window)

JOURNAL OF THE AMERICAN HEART ASSOCIATION 2020 SEP 1; 9(17):? Article e016552
Show Abstract
Background: Despite reductions in door-to-balloon times for primary coronary intervention, mortality from ST-segment-elevation myocardial infarction has plateaued. Early pre-primary coronary intervention treatment of ST-segment-elevation myocardial infarction with glycoprotein IIb/IIIa inhibitors improves pre-primary coronary intervention coronary flow, limits infarct size, and improves survival. We report the first human use of a novel glycoprotein IIb/IIIa inhibitor designed for subcutaneous first point-of-care ST-segment-elevation myocardial infarction treatment. Methods and Results: Healthy volunteers and patients with stable coronary artery disease receiving aspirin received escalating doses of RUC-4 or placebo in a sentinel-dose, randomized, blinded fashion. Inhibition of platelet aggregation (IPA) to ADP (20 mu mol/L), RUC-4 blood levels, laboratory evaluations, and clinical assessments were made through 24 hours and at 7 days. Doses were increased until reaching the biologically effective dose (the dose producing >= 80% IPA within 15 minutes, with return toward baseline within 4 hours). In healthy volunteers, 15 minutes after subcutaneous injection, mean +/- SD IPA was 6.9%+7.1% after placebo and 71.8%+/- 15.0% at 0.05 mg/kg (n=6) and 84.7%+/- 16.7% at 0.075 mg/kg (n=6) after RUC-4. IPA diminished over 90 to 120 minutes. In patients with coronary artery disease, 15 minutes after subcutaneous injection of placebo or 0.04 mg/kg (n=2), 0.05 mg/kg (n=6), and 0.075 mg/kg (n=18) of RUC-4, IPA was 14.6%+/- 11.7%, 53.6%+/- 17.0%, 76.9%+/- 10.6%, and 88.9%+/- 12.7%, respectively. RUC-4 blood levels correlated with IPA. Aspirin did not affect IPA or RUC-4 blood levels. Platelet counts were stable and no serious adverse events, bleeding, or injection site reactions were observed. Conclusions: RUC-4 provides rapid, high-grade, limited-duration platelet inhibition following subcutaneous administration that appears to be safe and well tolerated. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NTC03844191.
Farrell RJ, Ryan TA
Show All Authors

Local Sourcing of Secretory Proteins in Faraway Places (opens in new window)

TRENDS IN NEUROSCIENCES 2020 SEP; 43(9):649-650
Show Abstract
A recent paper by Carter et al. identifies a novel organelle, the ribosome-associated vesicle (RAV), that might serve as a portable, local factory for producing proteins destined for the secretory pathway. The appearance of RAVs in den-drites suggests they may serve to generate membrane and secreted proteins in distal processes.
Watkins TBK, Lim EL, Petkovic M, Elizalde S, Birkbak NJ, Wilson GA, Moore DA, Gronroos E, Rowan A, Dewhurst SM, Demeulemeester J, Dentro SC, Horswell S, Au L, Haase K, Escudero M, Rosenthal R, Al Bakir M, Xu H, Litchfield K, Lu WT, Mourikis TP, Dietzen M, Spain L, Cresswell GD, Biswas D, Lamy P, Nordentoft I, Harbst K, Castro-Giner F, Yates LR, Caramia F, Jaulin F, Vicier C, Tomlinson IPM, Brastianos PK, Cho RJ, Bastian BC, Dyrskjot L, Jonsson GB, Savas P, Loi S, Campbell PJ, Andre F, Luscombe NM, Steeghs N, Tjan-Heijnen VCG, Szallasi Z, Turajlic S, Jamal-Hanjani M, Van Loo P, Bakhoum SF, Schwarz RF, McGranahan N, Swanton C
Show All Authors

Pervasive chromosomal instability and karyotype order in tumour evolution (opens in new window)

NATURE 2020 SEP 2; ?(?):?
Show Abstract
Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes(1,2). The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution(1,3,4). Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such asBCL9, MCL1,ARNT(also known asHIF1B),TERTandMYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompassesBCL9, MCL1andARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassingMYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassingCCND1) in HER2(+)breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution. Chromosomal instability enables the continuous selection of somatic copy number alterations, which are established as ordered events that often occur in parallel, throughout tumour evolution and metastasis.
Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S
Show All Authors

Face selective patches in marmoset frontal cortex (opens in new window)

NATURE COMMUNICATIONS 2020 SEP 25; 11(1):? Article 4856
Show Abstract
In humans and macaque monkeys, socially relevant face processing is accomplished via a distributed functional network that includes specialized patches in frontal cortex. It is unclear whether a similar network exists in New World primates, who diverged similar to 35 million years from Old World primates. The common marmoset is a New World primate species ideally placed to address this question given their complex social repertoire. Here, we demonstrate the existence of a putative high-level face processing network in marmosets. Like Old World primates, marmosets show differential activation in anterior cingulate and lateral prefrontal cortices while they view socially relevant videos of marmoset faces. We corroborate the locations of these frontal regions by demonstrating functional and structural connectivity between these regions and temporal lobe face patches. Given the evolutionary separation between macaques and marmosets, our results suggest this frontal network specialized for social face processing predates the separation between Platyrrhini and Catarrhini.
Buda G, Valdez RM, Biagioli G, Olivieri FA, Affranchino N, Bouso C, Lotersztein V, Bogunovic D, Bustamante J, Marti MA
Show All Authors

Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report (opens in new window)

ALLERGY ASTHMA AND CLINICAL IMMUNOLOGY 2020 SEP 3; 16(1):? Article 77
Show Abstract
Interferon-stimulated gene 15 (ISG15)was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in theISG15gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF)ISG15variants. This case highlights the role ofISG15as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.
Boas FE, Nurili F, Bendet A, Cheleuitte-Nieves C, Basturk O, Askan G, Michel AO, Monette S, Ziv E, Sofocleous CT, Maxwell AWP, Schook LB, Solomon SB, Kelsen DP, Scherz A, Yarmohammadi H
Show All Authors

Induction and characterization of pancreatic cancer in a transgenic pig model (opens in new window)

PLOS ONE 2020 SEP 21; 15(9):? Article e0239391
Show Abstract
Background Preclinical testing of new locoregional therapies for pancreatic cancer has been challenging, due to the lack of a suitable large animal model. Purpose To develop and characterize a porcine model of pancreatic cancer. Unlike small animals, pigs have similar physiology, drug dosing, and immune response to humans. Locoregional therapy in pigs can be performed using the same size catheters and devices as in humans. Methods The Oncopig is a transgenic pig with Cre-inducibleTP53(R167H)andKRAS(G12D)mutations. In 12 Oncopigs, CT-guided core biopsy of the pancreas was performed. The core biopsy was incubated with an adenoviral vector carrying the Cre recombinase gene. The transformed core biopsy was injected back into the pancreas (head, tail, or both). The resulting tumors (n= 19) were characterized on multi-phase contrast-enhanced CT, and on pathology, including immunohistochemistry. Angiographic characterization of the tumors was performed in 3 pigs. Results Pancreatic tumors developed at 19 out of 22 sites (86%) that were inoculated. Average tumor size was 3.0 cm at 1 week (range: 0.5-5.1 cm). H&E and immunohistochemical stains revealed undifferentiated carcinomas, similar to those of the pancreatobiliary system in humans. Neoplastic cells were accompanied by a major inflammatory component. 1 of 12 pigs only had inflammatory nodules without evidence of neoplasia. On multiphase CT, tumors were hypovascular compared to the normal pancreas. There was no pancreatic duct dilation. In 3 pigs, angiography was performed, and in all 3 cases, the artery supplying the pancreatic tumor could be catheterized using a 2.4 F microcatheter. Selective angiography showed the pancreatic tumor, without extra-pancreatic perfusion. Conclusion Pancreatic cancer can be induced in a transgenic pig. Intra-arterial procedures using catheters designed for human interventions were technically feasible in this large animal model.