Skip to main content

Publications search

Found 37048 matches. Displaying 1911-1920
Weber R, Birsoy K
Show All Authors

The Transsulfuration Pathway Makes, the Tumor Takes

CELL METABOLISM 2019 NOV 5; 30(5):845-846
Cells can take up cysteine or synthesize it de novo from methionine, but synthesis alone does not meet the high demands of cancer cells to proliferate. In this issue, Zhu et al. (2019) identify the SAH:SAM ratio, indicative of the cellular methylation state, as limiting for effective cysteine synthesis and the growth of some tumors.
Cantwell H, Nurse P
Show All Authors

A homeostatic mechanism rapidly corrects aberrant nucleocytoplasmic ratios maintaining nuclear size in fission yeast

JOURNAL OF CELL SCIENCE 2019 NOV 15; 132(22):? Article UNSP jcs235911
Nuclear size scales with cell size across a wide range of cell types. The mechanism by which this scaling is maintained in growing cells remains unclear. Here, we investigate the mechanism of nuclear size homeostasis in the simple eukaryote fission yeast, by monitoring the recovery of aberrant nuclear volume to cell volume (N/C) ratios following perturbation. We demonstrate that both high and low N/C ratios correct rapidly, maintaining nuclear size homeostasis. We assess the kinetics of nuclear and cellular growth and of N/C ratio correction, and demonstrate that nuclear and cellular growth rates are not directly coupled. We propose that the mechanism underlying nuclear size homeostasis involves multiple limiting factors implicated in processes including nucleocytoplasmic transport, lipid biogenesis and RNA processing. We speculate that these link cellular size increases to changes in nuclear contents, which in turn lead to changes in nuclear membrane surface area. Our study reveals that there is rapid nuclear size homeostasis in cells, informing understanding of nuclear size control and size homeostasis of other membrane-bound organelles.
Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao ZM, Stephen D, Rosello-Diez A, Dauber-Decker KL, Orvis GD, Wu ZH, Tessier-Lavigne M, Joyner AL
Show All Authors

Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth

ELIFE 2019 NOV 19; 8(?):? Article e50617
For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.
Peles E, Levran O, Randesi M, Ott J, Kreek MJ, Adelson M
Show All Authors

Genetic Variant in the CRH-binding Protein Gene (CRHBP) is Associated With Cessation of Cocaine Use in Methadone Maintenance Patients With Opioid Addiction

JOURNAL OF ADDICTION MEDICINE 2019 NOV-DEC; 13(6):430-435
Objectives: We have previously shown associations between 4 genetic variants in opioid and stress-related genes (OPRM1, NPYR1/NPYR5, NR3C1, and CRHBP) and prolonged abstinence from heroin without methadone maintenance treatment (MMT). We currently assessed the associations between these variants and MMT patients' characteristics. Methods: A non-selective group of 351 patients who stayed at least 1 year in their first admission to MMT were genotyped and their characteristics and substance in urine on admission and after 1 year were studied. Results: The proportions of patients with both cocaine and benzodiazepine abuse were reduced significantly after 1 year in MMT; however, cocaine abuse cessation was significantly associated with the non-carriers of the CRHBP (corticotrophin releasing hormone binding protein) SNP rs1500 minor C allele (GG genotype) (P = 0.0009, PBonferroni = 0.0221). More carriers of the 2 C alleles (CC genotype) than carriers of the GC and GG genotypes abused cocaine on admission (32.3% vs 19.7%, respectively, P = 0.0414, recessive model), and more of the C allele carriers (GC and CC genotypes) than non-carriers (GG genotype) abused cocaine after 1 year in MMT (25.7% vs 15.8%, respectively, P = 0.0334, dominant model). Abusers of benzodiazepine were more prevalent among carriers of the C allele compared with non-carriers on admission 60.6% vs 45.9%, respectively, P = 0.0080, dominant model), as well as after 1 year in MMT (50.9% vs 39.1%, respectively, P = 0.0362). Conclusions: Reduction in cocaine abuse among MMTpatients may be mediated by a genetic effect in a stress-related gene (CRHBP SNP rs1500 minor C allele). Evaluations of larger samples, additional SNPs, and different populations are needed to support these findings.
Lebredonchel E, Houdou M, Hoffmann HH, Kondratska K, Krzewinski MA, Vicogne D, Rice CM, Klein A, Foulquier F
Show All Authors

Investigating the functional link between TMEM165 and SPCA1

BIOCHEMICAL JOURNAL 2019 NOV; 476(21):3281-3293
TMEM165 was highlighted in 2012 as the first member of the Uncharacterized Protein Family 0016 (UPF0016) related to human glycosylation diseases. Defects in TMEM165 are associated with strong Golgi glycosylation abnormalities. Our previous work has shown that TMEM165 rapidly degrades with supraphysiological manganese supplementation. In this paper, we establish a functional link between TMEM165 and SPCA1, the Golgi Ca2+/Mn2+ P-type ATPase pump. A nearly complete loss of TMEM165 was observed in SPCA1-deficient Hap1 cells. We demonstrate that TMEM165 was constitutively degraded in lysosomes in the absence of SPCA1. Complementation studies showed that TMEM165 abundance was directly dependent on SPCA1's function and more specifically its capacity to pump Mn2+ from the cytosol into the Golgi lumen. Among SPCA1 mutants that differentially impair Mn2+ and Ca2+ transport, only the Q747A mutant that favors Mn2+ pumping rescues the abundance and Golgi subcellular localization of TMEM165. Interestingly, the overexpression of SERCA2b also rescues the expression of TMEM165. Finally, this paper highlights that TMEM165 expression is linked to the function of SPCA1.
Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R
Show All Authors

Conversion of Escherichia coli to Generate All Biomass Carbon from CO2

CELL 2019 NOV 27; 179(6):1255-1263.e12
The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.
Wang XM, Lu JP, Xie WG, Lu XY, Liang YJ, Li M, Wang ZC, Huang XD, Tang MX, Pfaff DW, Tang YP, Yao P
Show All Authors

Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2019 NOV 19; 116(47):23743-23752
Epidemiological studies show that maternal diabetes is associated with an increased risk of autism spectrum disorders (ASDs), although the detailed mechanisms remain unclear. The present study aims to investigate the potential effect of maternal diabetes on autism-like behavior in offspring. The results of in vitro study showed that transient hyperglycemia induces persistent reactive oxygen species (ROS) generation with suppressed superoxide dismutase 2 (SOD2) expression. Additionally, we found that SOD2 suppression is due to oxidative stress-mediated histone methylation and the subsequent dissociation of early growth response 1 (Egr1) on the SOD2 promoter. Furthermore, in vivo rat experiments showed that maternal diabetes induces SOD2 suppression in the amygdala, resulting in autism-like behavior in offspring. SOD2 overexpression restores, while SOD2 knockdown mimics, this effect, indicating that oxidative stress and SOD2 expression play important roles in maternal diabetes-induced autism-like behavior in offspring, while prenatal and postnatal treatment using antioxidants permeable to the blood-brain barrier partly ameliorated this effect. We conclude that maternal diabetes induces autism-like behavior through hyperglycemia-mediated persistent oxidative stress and SOD2 suppression. Here we report a potential mechanism for maternal diabetes-induced ASD.
Seib KL, Haag AF, Oriente F, Fantappie L, Borghi S, Semchenko EA, Schulz BL, Ferlicca F, Taddei AR, Giuliani MM, Pizza M, Delany I
Show All Authors

The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence

FASEB JOURNAL 2019 NOV; 33(11):12324-12335
GNA2091 is one of the components of the 4-component meningococcal serogroup B vaccine (4CMenB) vaccine and is highly conserved in all meningococcal strains. However, its functional role has not been fully characterized. Here we show that nmb2091 is part of an operon and is cotranscribed with the nmb2089, nmb2090, and nmb2092 adjacent genes, and a similar but reduced operon arrangement is conserved in many other gram-negative bacteria. Deletion of the nmb2091 gene causes an aggregative phenotype with a mild defect in cell separation; differences in the outer membrane composition and phospholipid profile, in particular in the phosphoethanolamine levels; an increased level of outer membrane vesicles; and deregulation of the zinc-responsive genes such as znuD. Finally, the A2091 strain is attenuated with respect to the wild-type strain in competitive index experiments in the infant rat model of meningococcal infection. Altogether these data suggest that GNA2091 plays important roles in outer membrane architecture, biogenesis, homeostasis, and in meningococcal survival in vivo, and a model for its role is discussed. These findings highlight the importance of GNA2091 as a vaccine component.
Li J, Ritelli M, Ma CS, Rao G, Habib T, Corvilain E, Bougarn S, Cypowyj S, Grodecka L, Levy R, Beziat V, Shang L, Payne K, Avery DT, Migaud M, Boucherit S, Boughorbel S, Guennoun A, Chrabieh M, Rapaport F, Bigio B, Itan Y, Boisson B, Fieschi C, Cormier-Daire V, Syx D, Malfait F, Zoppi N, Abel L, Freiberger T, Dietz HC, Marr N, Tangye SG, Colombi M, Casanova JL, Puel A
Show All Authors

Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-beta

SCIENCE IMMUNOLOGY 2019 NOV; 4(41):? Article eaax7965
Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTDs) often impair the TGF-beta-dependent homeostasis of connective tissues. The signaling pathways involved are incompletely understood. We report a three-generation family with an autosomal dominant (AD) combination of CMC and a previously undescribed form of CTD that clinically overlaps with Ehlers-Danlos syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. This variant is loss-of-expression and loss-of-function in the patients' fibroblasts, which display AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, responses to IL-17A and IL-17F. Moreover, the development of the patients' T(H)17 cells was impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-beta-responsive pathway and further accounting for the patients' CMC. Consistently, the patients' fibroblasts displayed impaired JNK1- and c-Jun/ATF-2-dependent induction of key extracellular matrix (ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-beta. Furthermore, they displayed a transcriptional pattern in response to TGF-beta different from that of fibroblasts from patients with Loeys-Dietz syndrome caused by mutations of TGFBR2 or SMAD3, further accounting for the patients' complex and unusual CTD phenotype. This experiment of nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida and for the TGF-beta-dependent homeostasis of connective tissues.
Jacobo A, Dasgupta A, Erzberger A, Siletti K, Hudspeth AJ
Show All Authors

Notch-Mediated Determination of Hair-Bundle Polarity in Mechanosensory Hair Cells of the Zebrafish Lateral Line

CURRENT BIOLOGY 2019 NOV 4; 29(21):3579-3587.e7
The development of mechanosensory epithelia, such as those of the auditory and vestibular systems, results in the precise orientation of mechanosensory hair cells. After division of a precursor cell in the zebrafish's lateral line, the daughter hair cells differentiate with opposite mechanical sensitivity. Through a combination of theoretical and experimental approaches, we show that Notch1a-mediated lateral inhibition produces a bistable switch that reliably gives rise to cell pairs of opposite polarity. Using a mathematical model of the process, we predict the outcome of several genetic and chemical alterations to the system, which we then confirm experimentally. We show that Notch1a downregulates the expression of Emx2, a transcription factor known to be involved in polarity specification, and acts in parallel with the planar-cell-polarity system to determine the orientation of hair bundles. By analyzing the effect of simultaneous genetic perturbations to Notch1a and Emx2, we infer that the gene-regulatory network determining cell polarity includes an undiscovered polarity effector.