Skip to main content

Publications search

Found 37173 matches. Displaying 3951-3960
Wu TR, Huang TT, Martel J, Liau JC, Chiu CY, Leu YL, Jian WT, Chang IT, Lu CC, Ojcius DM, Ko YF, Lai HC, Young JD
Show All Authors

Pinicolol B from Antrodia cinnamomea induces apoptosis of nasopharyngeal carcinoma cells

JOURNAL OF ETHNOPHARMACOLOGY 2017 APR 6; 201(?):117-122
Ethnopharmacological relevance: The medicinal mushroom Antrodia cinnamomea possesses anticancer properties but the active compounds responsible for these effects are mostly unknown. Aim of the study: We aimed to identify novel A. cinnamomea compounds that produce cytotoxic effects on cancer cells. Materials and methods: Using ethanol extraction and chromatography, we isolated the lanostanoid compound lanosta-7,9(11),24-trien-3 beta,15 alpha,21-triol (1) from cultured A. cinnamomea mycelium. Cytotoxicity and proapoptotic effects of compound 1 were evaluated using the MTS assay and flow cytometry analysis, respectively. Results: Compound 1 produced cytotoxic effects on the nasopharyngeal carcinoma cell lines TWO2 and TWO4, with IC50 values of 63.3 and 115.0 M, respectively. On the other hand, no cytotoxic effects were observed on non-tumorigenic nasopharyngeal epithelial cells (NP69). In addition, compound 1 induced apoptosis in TWO2 and TWO4 cells as revealed by flow cytometry analysis. Conclusions: Our results demonstrate for the first time the presence of pinicolol B in A. cinnamomea mycelium and suggest that this compound may contribute to the anticancer effects of A. cinnamomea.
Sadagopan S, Zarco W, Freiwald WA
Show All Authors

A causal relationship between face-patch activity and face-detection behavior

ELIFE 2017 APR 4; 6(?):? Article e18558
The primate brain contains distinct areas densely populated by face-selective neurons. One of these, face-patch ML, contains neurons selective for contrast relationships between face parts. Such contrast-relationships can serve as powerful heuristics for face detection. However, it is unknown whether neurons with such selectivity actually support face-detection behavior. Here, we devised a naturalistic face-detection task and combined it with fMRI-guided pharmacological inactivation of ML to test whether ML is of critical importance for real-world face detection. We found that inactivation of ML impairs face detection. The effect was anatomically specific, as inactivation of areas outside ML did not affect face detection, and it was categorically specific, as inactivation of ML impaired face detection while sparing body and object detection. These results establish that ML function is crucial for detection of faces in natural scenes, performing a critical first step on which other face processing operations can build.
Fischer JC, Bscheider M, Eisenkolb G, Lin CC, Wintges A, Otten V, Lindemans CA, Heidegger S, Rudelius M, Monette S, Rodriguez KAP, Calafiore M, Liebermann S, Liu C, Lienenklaus S, Weiss S, Kalinke U, Ruland J, Peschel C, Shono Y, Docampo M, Velardi E, Jenq RR, Hanash AM, Dudakov JA, Haas T, van den Brink MRM, Poeck H
Show All Authors

RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury

SCIENCE TRANSLATIONAL MEDICINE 2017 APR 19; 9(386):? Article eaag2513
The molecular pathways that regulate the tissue repair function of type I interferon (IFN-I) during acute tissue damage are poorly understood. We describe a protective role for IFN-I and the RIG-I/MAVS signaling pathway during acute tissue damage in mice. Mice lacking mitochondrial antiviral-signaling protein (MAVS) were more sensitive to total body irradiation- and chemotherapy-induced intestinal barrier damage. These mice developed worse graft-versus-host disease (GVHD) in a preclinical model of allogeneic hematopoietic stem cell transplantation (allo-HSCT) than did wild-type mice. This phenotype was not associated with changes in the intestinal microbiota but was associated with reduced gut epithelial integrity. Conversely, targeted activation of the RIG-I pathway during tissue injury promoted gut barrier integrity and reduced GVHD. Recombinant IFN-I or IFN-I expression induced by RIG-I promoted growth of intestinal organoids in vitro and production of the antimicrobial peptide regenerating islet-derived protein 3 y (Reg1117). Our findings were not confined to RIG-I/MAVS signaling because targeted engagement of the STING (stimulator of interferon genes) pathway also protected gut barrier function and reduced GVHD. Consistent with this, STING-deficient mice suffered worse GVHD after allo-HSCT than did wild-type mice. Overall, our data suggest that activation of either RIG-I/MAVS or STING pathways during acute intestinal tissue injury in mice resulted in IFN-I signaling that maintained gut epithelial barrier integrity and reduced GVHD severity. Targeting these pathways may help to prevent acute intestinal injury and GVHD during allogeneic transplantation.
Iaea DB, Mao S, Lund FW, Maxfield FR
Show All Authors

Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane

MOLECULAR BIOLOGY OF THE CELL 2017 APR 15; 28(8):1111-1122
Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t(1/2) = 12-15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for similar to 25% of total sterol transport and similar to 33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC.
Gleicher N, Kushnir VA, Barad DH
Show All Authors

Redirecting reproductive immunology research toward pregnancy as a period of temporary immune tolerance

JOURNAL OF ASSISTED REPRODUCTION AND GENETICS 2017 APR; 34(4):425-430
Referring to two recent publications, we here propose that clinical reproductive immunology has for decades stagnated because reproductive medicine, including assisted reproduction (AR), has failed to accept embryo implantation as an immune system-driven process, dependent on establishment of maternal tolerance toward the implanting fetal semi-allograft (and complete allograft in cases of oocyte donation). Pregnancy represents a biologically unique period of temporary (to the period of gestation restricted) tolerance, otherwise only known in association with parasitic infections. Rather than investigating the immune pathways necessary to induce this rather unique state of tolerance toward the rapidly growing parasitic antigen load of the fetus, the field, instead, concentrated on irrelevant secondary immune phenomena (i.e., "immunological noise"). It, therefore, does not surprise that interesting recent research, offering new potential insights into maternal tolerance during pregnancy, was mostly published outside of the field of reproductive medicine. This research offers evidence for existence of inducible maternal tolerance pathways with the ability of improving maternal fecundity and, potentially, reducing such late pregnancy complications as premature labor and preeclampsia/eclampsia due to premature abatement of maternal tolerance. Increasing evidence also suggests that tolerance-inducing immune pathways are similar in successful pregnancy, successful organ transplantation and, likely also in the tolerance of "self" (i.e., prevention of autoimmunity). Identifying and isolating these pathways, therefore, may greatly benefit all three of these clinical areas, and research in reproductive immunology should be accordingly redirected.
Vargas FA, Furness AJS, Solomon I, Joshi K, Mekkaoui L, Lesko MH, Rota EM, Dahan R, Georgiou A, Sledzinska A, Ben Aissa A, Franz D, Sunderland MW, Wong YNS, Henry JY, O'Brien T, Nicol D, Challacombe B, Beers SA, Turajlic S, Gore M, Larkin J, Swanton C, Chester KA, Pule M, Ravetch JV, Marafioti T, Peggs KS, Quezada SA
Show All Authors

Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

IMMUNITY 2017 APR 18; 46(4):577-586
CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (Fc gamma R) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating Fc gamma Rs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology.
de Souza TL, Fernandes RCDC, da Silva JA, Alves VG, Coelho AG, Faria ACS, Simao NMMS, Souto JT, Deswarte C, Boisson-Dupuis S, Torgerson D, Casanova JL, Bustamante J, Medina-Acosta E
Show All Authors

Microbial Disease Spectrum Linked to a Novel IL-12R beta 1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression

FRONTIERS IN MICROBIOLOGY 2017 APR 13; 8(?):? Article 616
Patients with Mendelian Susceptibility to Mycobacterial Diseases (MSMD) exhibit variable vulnerability to infections by mycobacteria and other intramacrophagic bacteria (e.g., Salmonella and Klebsiella) and fungi (e.g., Histoplasma, Candida, Paracoccidioides, Coccidioides, and Cryptococcus). The hallmark of MSMD is the inherited impaired production of interferon gamma (IFN-gamma) or the lack of response to it. Mutations in the interleukin (IL)-12 receptor subunit beta 1 (IL12RB1) gene accounts for 38% of cases of MSMD. Most IL12RB1 pathogenic allele mutations, including ten known stop-gain variants, cause IL-12R beta 1 complete deficiency (immunodeficiency-30, IMD30) by knocking out receptor cell-surface expression. IL12RB1 loss-of-function genotypes impair both IL-12 and IL-23 responses. Here, we assess the health effects of a rare, novel IL12RB1 stop-gain homozygous genotype with paradoxical IL-12R beta 1 cell-surface expression. We appraise four MSMD children from three unrelated Brazilian kindreds by clinical consultation, medical records, and genetic and immunologic studies. The clinical spectrum narrowed down to Bacillus Calmette-Guerin (BCG) vaccine-related suppurative adenitis in all patients with one death, and recrudescence in two, histoplasmosis, and recurrence in one patient, extraintestinal salmonellosis in one child, and cutaneous vasculitis in another. In three patients, we established the homozygous Trp7Ter predicted loss-of-function inherited genotype and inferred it from the heterozygote parents of the fourth case. The Trp7Ter mutation maps to the predicted IL-12R beta 1 N-terminal signal peptide sequence. BCG- or phytohemagglutinin-blasts from the three patients have reduced cell-surface expression of IL-12R beta 1 with impaired production of IFN-gamma and IL-17A. Screening of 227 unrelated healthy subjects from the same geographic region revealed one heterozygous genotype (allele frequency 0.0022) vs. one in over 841,883 public genome/exomes. We also show that the carriers bear European ancestry-informative alleles and share the extended CACCAGTCCGG IL12RB1 haplotype that occurs worldwide with a frequency of 8.4%. We conclude that the novel IL12RB1 N-terminal signal peptide stop-gain loss-of-function homozygous genotype confers IL-12R beta 1 deficiency with varying severity and early-onset age through diminished cell-surface expression of an impaired IL-12R beta 1 polypeptide. We firmly recommend attending to warning signs of IMD30 in children who are HIV-1 negative with a history of adverse effects to the BCG vaccine and presenting with recurrent Histoplasma spp. and extraintestinal Salmonella spp. infections.
Belkaya S, Kontorovich AR, Byun M, Mulero-Navarro S, Bajolle F, Cobat A, Josowitz R, Itan Y, Quint R, Lorenzo L, Boucherit S, Stoven C, Di Filippo S, Abel L, Zhang SY, Bonnet D, Gelb BD, Casanova JL
Show All Authors

Autosomal Recessive Cardiomyopathy Presenting as Acute Myocarditis

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 2017 APR 4; 69(13):1653-1665
BACKGROUND Myocarditis is inflammation of the heart muscle that can follow various viral infections. Why children only rarely develop life-threatening acute viral myocarditis (AVM), given that the causal viral infections are common, is unknown. Genetic lesions might underlie such susceptibilities. Mouse genetic studies demonstrated that interferon (IFN)-alpha/beta immunity defects increased susceptibility to virus-induced myocarditis. Moreover, variations in human TLR3, a potent inducer of IFNs, were proposed to underlie AVM. OBJECTIVES This study sought to evaluate the hypothesis that human genetic factors may underlie AVM in previously healthy children. METHODS We tested the role of TLR3-IFN immunity using human induced pluripotent stem cell-derived cardiomyocytes. We then performed whole-exome sequencing of 42 unrelated children with acute myocarditis (AM), some with proven viral causes. RESULTS We found that TLR3-and STAT1-deficient cardiomyocytes were not more susceptible to Coxsackie virus B3 (CVB3) infection than control cells. Moreover, CVB3 did not induce IFN-alpha/beta and IFN-alpha/beta-stimulated genes in control cardiomyocytes. Finally, exogenous IFN-alpha did not substantially protect cardiomyocytes against CVB3. We did not observe a significant enrichment of rare variations in TLR3-or IFN-alpha/beta-related genes. Surprisingly, we found that homozygous but not heterozygous rare variants in genes associated with inherited cardiomyopathies were significantly enriched in AM-AVM patients compared with healthy individuals (p = 2.22E-03) or patients with other diseases (p = 1.08E-04). Seven of 42 patients (16.7%) carried rare biallelic (homozygous or compound heterozygous) nonsynonymous or splice-site variations in 6 cardiomyopathy-associated genes (BAG3, DSP, PKP2, RYR2, SCN5A, or TNNI3). CONCLUSIONS Previously silent recessive defects of the myocardium may predispose to acute heart failure presenting as AM, notably after common viral infections in children. (C) 2017 by the American College of Cardiology Foundation.
Gonzales J, Bhupathiraju NVSDK, Perea W, Chu H, Berisha N, Bueno V, Dodic N, Rozenberg J, Greenbaum NL, Drain CM
Show All Authors

Facile synthesis of chlorin bioconjugates by a series of click reactions

CHEMICAL COMMUNICATIONS 2017 APR 4; 53(26):3773-3776
A multifunctional chlorin platform appended with four short polyethylene glycols and a carboxylate-linker allows rapid conjugation to biotargeting motifs such as proteins and oligonucleotides. The stability and photophysical properties of the chlorin enable development of diagnostics, imaging, molecular tracking, and theranostics.
Meier JA, Hyun M, Cantwell M, Raza A, Mertens C, Raje V, Sisler J, Tracy E, Torres-Odio S, Gispert S, Shaw PE, Baumann H, Bandyopadhyay D, Takabe K, Larner AC
Show All Authors

Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production

SCIENCE SIGNALING 2017 MAR 28; 10(472):? Article eaag2588
Signal transducer and activator of transcription 3 (STAT3) is associated with various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria, where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that the amounts of STAT3 in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended on phosphorylation of Ser(727) in STAT3 and new protein synthesis. Under these conditions, mitochondrially localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the amino terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially localized STAT3 in sensing and responding to external stimuli.