Skip to main content

Publications search

Found 37387 matches. Displaying 5011-5020
Halberg N, Sengelaub CA, Navrazhina K, Molina H, Uryu K, Tavazoie SF
Show All Authors

PITPNC1 Recruits RAB1B to the Golgi Network to Drive Malignant Secretion

CANCER CELL 2016 MAR 14; 29(3):339-353
Enhanced secretion of tumorigenic effector proteins is a feature of malignant cells. The molecular mechanisms underlying this feature are poorly defined. We identify PITPNC1 as a gene amplified in a large fraction of human breast cancer and overexpressed in metastatic breast, melanoma, and colon cancers. Biochemical, molecular, and cell-biological studies reveal that PITPNC1 promotes malignant secretion by binding Golgi-resident PI4P and localizing RAB1B to the Golgi. RAB1B localization to the Golgi allows for the recruitment of GOLPH3, which facilitates Golgi extension and enhanced vesicular release. PITPNC1-mediated vesicular release drives metastasis by increasing the secretion of pro-invasive and pro-angiogenic mediators HTRA1, MMP1, FAM3C, PDGFA, and ADAM10. We establish PITPNC1 as a PI4P-binding protein that enhances vesicular secretion capacity in malignancy.
Zhu N, Chen M, Eng R, DeJong J, Sinha AU, Rahnamay NF, Roche R, Al-Shahrour F, Minehart JC, Chen CW, Deshpande AJ, Xu HM, Chu SHH, Ebert BL, Roeder RG, Armstrong SA
Show All Authors

MLL-AF9-and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C

JOURNAL OF CLINICAL INVESTIGATION 2016 MAR; 126(3):997-1011
Self-renewal is a hallmark of both hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs); therefore, the identification of mechanisms that are required for LSC, but not HSC, function could provide therapeutic opportunities that are more effective and less toxic than current treatments. Here, we employed an in vivo shRNA screen and identified jumonji domain-containing protein JMJD1C as an important driver of MLL-AF9 leukemia. Using a conditional mouse model, we showed that loss of JMJD1C substantially decreased LSC frequency and caused differentiation of MLL-AF9- and homeobox A9-driven (HOXA9-driven) leukemias. We determined that JMJU1C directly interacts with HOXA9 and modulates a HOXA9-controlled gene-expression program. In contrast, loss of JMJD1C led to only minor defects in blood homeostasis and modest effects on HSC self-renewal. Together, these data establish JMJD1C as an important mediator of MLL-AF9- and HOXA9-driven LSC function that is largely dispensable for HSC function.
Jackson CC, Dickson MA, Sadjadi M, Gessain A, Abel L, Jouanguy E, Casanova JL
Show All Authors

Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8

PEDIATRIC BLOOD & CANCER 2016 MAR; 63(3):392-397
Kaposi sarcoma (KS) is an endothelial malignancy caused by human herpes virus-8 (HHV-8) infection. The epidemic and iatrogenic forms of childhood KS result from a profound and acquired T cell deficiency. Recent studies have shown that classic KS of childhood can result from rare single-gene inborn errors of immunity, with mutations in WAS, IFNGR1, STIM1, and TNFRSF4. The pathogenesis of the endemic form of childhood KS has remained elusive. We review childhood KS pathogenesis and its relationship to inherited and acquired immunodeficiency to oncogenic HHV-8.
Minnich M, Tagoh H, Bonelt P, Axelsson E, Fischer M, Cebolla B, Tarakhovsky A, Nutt SL, Jaritz M, Busslinger M
Show All Authors

Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation

NATURE IMMUNOLOGY 2016 MAR; 17(3):331-343
The transcription factor Blimp-1 is necessary for the generation of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp-1 target genes. Blimp-1 promoted the migration and adhesion of plasmablasts. It directly repressed genes encoding several transcription factors and Aicda (which encodes the cytidine deaminase AID) and thus silenced B cell specific gene expression, antigen presentation and class-switch recombination in plasmablasts. It directly activated genes, which led to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp-1 induced the transcription of immunoglobulin genes by controlling the 3' enhancers of the loci encoding the immunoglobulin heavy chain (Igh) and K-light chain (lgk) and, furthermore, regulated the post-transcriptional expression switch from the membrane-bound form of the immunoglobulin heavy chain to its secreted form by activating EII2 (which encodes the transcription-elongation factor ELL2). Notably, Blimp-1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under the control of Blimp-1.
Chung PJ, Park BS, Wang H, Liu J, Jang IC, Chua NH
Show All Authors

Light-Inducible MiR163 Targets PXMT1 Transcripts to Promote Seed Germination and Primary Root Elongation in Arabidopsis

PLANT PHYSIOLOGY 2016 MAR; 170(3):1772-1782
Expression of many plant microRNAs is responsive to hormones and environmental stimuli, but none has yet been associated with light. Arabidopsis (Arabidopsis thaliana) miR163 is 24 nucleotides in length and targets mRNAs encoding several S-adenosyl-Metdependent carboxyl methyltransferase family members. Here, we found that miR163 is highly induced by light during seedling deetiolation as well as seed germination. Under the same condition, its target PXMT1, encoding a methyltransferase that methylates 1,7-paraxanthine, is down-regulated. Light repression of PXMT1 is abolished in a mir163 null mutant, but the repression can be restored to wild-type levels in complementation lines expressing pri-miR163 gene in the mir163 mutant background. During seed germination, miR163 and its target PXMT1 are predominantly expressed in the radicle, and the expression patterns of the two genes are inversely correlated. Moreover, compared with the wild type, mir163 mutant or PXMT1 overexpression line shows delayed seed germination under continuous light, and seedlings develop shorter primary roots with an increased number of lateral roots under long-day condition. Together, our results indicate that miR163 targets PXMT1 mRNA to promote seed germination and modulate root architecture during early development of Arabidopsis seedlings.
Thongthip S, Bellani M, Gregg SQ, Sridhar S, Conti BA, Chen YL, Seidman MM, Smogorzewska A
Show All Authors

Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction

GENES & DEVELOPMENT 2016 MAR 15; 30(6):645-659
Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.
Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses.
Gleicher N, Kushnir VA, Barad DH
Show All Authors

Randomized controlled trial of minimal stimulation versus conventional in vitro fertilization

AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY 2016 MAR; 214(3):412-413
Yang ZT, Zhen ZL, Huang LJ, Kong XZ, Wang X, Song YY, Liu J
Show All Authors

Neural Univariate Activity and Multivariate Pattern in the Posterior Superior Temporal Sulcus Differentially Encode Facial Expression and Identity

SCIENTIFIC REPORTS 2016 MAR 21; 6(?):? Article 23427
Faces contain a variety of information such as one's identity and expression. One prevailing model suggests a functional division of labor in processing faces that different aspects of facial information are processed in anatomically separated and functionally encapsulated brain regions. Here, we demonstrate that facial identity and expression can be processed in the same region, yet with different neural coding strategies. To this end, we employed functional magnetic resonance imaging to examine two types of coding schemes, namely univariate activity and multivariate pattern, in the posterior superior temporal cortex (pSTS) - a face-selective region that is traditionally viewed as being specialized for processing facial expression. With the individual difference approach, we found that participants with higher overall face selectivity in the right pSTS were better at differentiating facial expressions measured outside of the scanner. In contrast, individuals whose spatial pattern for faces in the right pSTS was less similar to that for objects were more accurate in identifying previously presented faces. The double dissociation of behavioral relevance between overall neural activity and spatial neural pattern suggests that the functional-division-of-labor model on face processing is over-simplified, and that coding strategies shall be incorporated in a revised model.
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS
Show All Authors

Sensitive red protein calcium indicators for imaging neural activity

ELIFE 2016 MAR 24; 5(?):? Article e12727
Genetically encoded calcium indicators (GEC's) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GEC's are widely used for in vivo neurophysiology, GEC's with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GEC's are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GEC's based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GEC's in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GEC's facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.