Skip to main content

Publications search

Found 37048 matches. Displaying 571-580
Ding T, Magarinos AM, Kow LM, Milner TA, Pfaff DW
Show All Authors

Kv2.1 expression in giant reticular neurons of the postnatal mouse brain

JOURNAL OF CHEMICAL NEUROANATOMY 2021 NOV; 117 Article 102005
Previous experiments charted the development of behavioral arousal in postnatal mice. From Postnatal Day 3 (P3) to Postnatal Day 6 (P6) mice (a) become significantly more active, "arousable"; and (b) in large reticular neurons, nucleus gigantocellularis (NGC), patch clamp recordings reveal a significantly increased ability to fire high frequency trains of action potentials as are associated with elevated cortical arousal. These action potential trains depend on delayed rectifiers such as Kv2.1. Here we report tracking the development of expression of a delayed rectifier, Kv2.1 in NGC neurons crucial for initiating CNS arousal. In tissue sections, light microscope immunohistochemistry revealed that expression of Kv2.1 in NGC neurons is greater at day P6 than at P3. Electron microscope immunohistochemistry revealed Kv2.1 labeling on the plasmalemmal surface of soma and dendrites, greater on P6 than P3. In brainstem reticular neuron cell culture, Kv2.1 immunocytochemistry increased monotonically from Days-In-Vitro 3-10, paralleling the ability of such neurons to fire action potential trains. The increase of Kv2.1 expression from P3 to P6, perhaps in conjunction with other delayed rectifier currents, could permit the ability to fire action potential trains in NGC neurons. Further work with genetically identified NGC neurons is indicated.
Luu AP, Yao ZL, Ramachandran S, Azzopardi SA, Miles LA, Schneider WM, Hoffmann HH, Bozzacco L, Garcia G, Gong DY, Damoiseaux R, Tang HL, Morizono K, Rudin CM, Sun R, Arumugaswami V, Poirier JT, MacDonald MR, Rice CM, Li MMH
Show All Authors

A CRISPR Activation Screen Identifies an Atypical Rho GTPase That Enhances Zika Viral Entry

VIRUSES-BASEL 2021 NOV; 13(11):? Article 2113
Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.
Xu CS, Pang S, Shtengel G, Muller A, Ritter AT, Hoffman HK, Takemura SY, Lu ZY, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF
Show All Authors

An open-access volume electron microscopy atlas of whole cells and tissues

NATURE 2021 NOV 4; 599(7883):147-+
Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels(1). Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle(2)) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions. Open-access 3D images of whole cells and tissues with combined finer resolution and larger sample size are enabled by advances in focused ion beam-scanning electron microscopy.
Baynard C, Prisinzano TE, Butelman ER
Show All Authors

Rapid-Onset Anti-Stress Effects of a Kappa-Opioid Receptor Antagonist, LY2795050, Against Immobility in an Open Space Swim Paradigm in Male and Female Mice

FRONTIERS IN PHARMACOLOGY 2021 NOV 22; 12(?):? Article 775317
The kappa-opioid receptor (KOR) / dynorphin system is implicated with behavioral and neurobiological effects of stress exposure (including heavy exposure to drugs of abuse) in translational animal models. Thus some KOR-antagonists can decrease the aversive, depressant-like and anxiety-like effects caused by stress exposure. The first generation of selective KOR-antagonists have slow onsets (hours) and extremely long durations of action (days-weeks), in vivo. A new generation of KOR antagonists with rapid onset and shorter duration of action can potentially decrease the effects of stress exposure in translational models, and may be of interest for medication development. This study examined the rapid onset anti-stress effects of one of the shorter acting novel KOR-antagonists (LY2795050, (3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)) in a single-session open space swim (OSS) stress paradigm (15 min duration), in adult male and female C57BL/6 J mice. LY2795050 (0.32 mg/kg, i.p.) had rapid onset (within 15 min) and short duration (<3 h) of KOR-antagonist effects, based on its blockade of the locomotor depressant effects of the KOR-agonist U50,488 (10 mg/kg). LY2795050 (0.32 mg/kg), when administered only 1 min prior to the OSS stress paradigm, decreased immobility in males, but not females. With a slightly longer pretreatment time (15 min), this dose of LY2795050 decreased immobility in both males and females. A 10-fold smaller dose of LY2795050 (0.032 mg/kg) was inactive in the OSS, showing dose-dependence of this anti-stress effect. Overall, these studies show that a novel KOR-antagonist can produce very rapid onset anti-immobility effects in this model of acute stress exposure.
Chen Z, Hankey W, Zhao Y, Groth J, Huang FR, Wang HY, Campos AR, Huang JT, Roeder RG, Wang QB
Show All Authors

Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling

NATURE COMMUNICATIONS 2021 NOV 3; 12(1):? Article 6318
RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states. RNA Polymerase II (Pol II) recycling can influence transcription efficiency. Here the authors describe an approach aimed at facilitating the identification of factors involved in Pol II recycling and identify PAF1 complex components as mediators of recycling.
Picatoste B, Yammine L, Leahey RA, Soares D, Johnson EF, Cohen P, McGraw TE
Show All Authors

Defective insulin-stimulated GLUT4 translocation in brown adipocytes induces systemic glucose homeostasis dysregulation independent of thermogenesis in female mice

MOLECULAR METABOLISM 2021 NOV; 53 Article 101305
Objective: Recent studies indicate that brown adipose tissue, in addition to its role in thermogenesis, has a role in the regulation of whole-body metabolism. Here we characterize the metabolic effects of deleting Rab10, a protein key for insulin stimulation of glucose uptake into white adipocytes, solely from brown adipocytes. Methods: We used a murine brown adipocyte cell line and stromal vascular fraction-derived in vitro differentiated brown adipocytes to study the role of Rab10 in insulin-stimulated GLUT4 translocation to the plasma membrane and insulin-stimulated glucose uptake. We generated a brown adipocyte-specific Rab10 knockout for in vivo studies of metabolism and thermoregulation. Results: We demonstrate that deletion of Rab10 from brown adipocytes results in a two-fold reduction of insulin-stimulated glucose transport by reducing translocation of the GLUT4 glucose transporter to the plasma membrane, an effect linked to whole-body glucose intolerance and insulin resistance in female mice. This effect on metabolism is independent of the thermogenic function of brown adipocytes, thereby revealing a metabolism-specific role for brown adipocytes in female mice. The reduced glucose uptake induced by Rab10 deletion disrupts ChREBP regulation of de novo lipogenesis (DNL) genes, providing a potential link between DNL in brown adipocytes and whole-body metabolic regulation in female mice. However, deletion of Rab10 from male mice does not induce systemic insulin resistance, although ChREBP regulation is disrupted. Conclusions: Our studies of Rab10 reveal the role of insulin-regulated glucose transport into brown adipocytes in whole-body metabolic homeostasis of female mice. Importantly, the contribution of brown adipocytes to whole-body metabolic regulation is independent of its role in thermogenesis. It is unclear whether the whole-body metabolic sexual dimorphism is because female mice are permissive to the effects of Rab10 deletion from brown adipocytes or because male mice are resistant to the effect. (c) 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Vertebrate genome evolution remains a hotly debated topic, specifically as regards the number and the timing of putative rounds of whole genome duplication events. In this study, I sought to shed light to this conundrum through assessing the evolutionary history of the oxytocin/vasotocin receptor family. I performed ancestral analyses of the genomic segments containing oxytocin and vasotocin receptors (OTR-VTRs) by mapping them back to the reconstructed ancestral vertebrate/chordate karyotypes reported in five independent studies (Nakatani et al., 2007; Putnam et al., 2008; Smith and Keinath, 2015; Smith et al., 2018; Simakov et al., 2020) and found that two alternative scenarios can account for their evolution: one consistent with one round of whole genome duplication in the common ancestor of lampreys and gnathostomes, followed by segmental duplications in both lineages, and another consistent with two rounds of whole genome duplication, with the first occurring in the gnathostome-lamprey ancestor and the second in the jawed vertebrate ancestor. Combining the data reported here with synteny and phylogeny data reported in our previous study (Theofanopoulou et al., 2021), I put forward that a single round of whole genome duplication scenario is more consistent with the synteny and evolution of chromosomes where OTR-VTRs are encountered, without excluding the possibility of a scenario including two rounds of whole genome duplication. Although the analysis of one gene family is not able to capture the full complexity of vertebrate genome evolution, this study can provide solid insight, since the gene family used here has been meticulously analyzed for its genes' orthologous and paralogous relationships across species using high quality genomes.
Galea S, Vaughan R
Show All Authors

Accounting for the Full Scope of Health Consequences of Policy Decisions Across the Life Course

AMERICAN JOURNAL OF PUBLIC HEALTH 2021 NOV; 111(11):1932-1933
Zhao C, MacKinnon R
Show All Authors

Molecular structure of an open human K-ATP channel

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2021 NOV 30; 118(48):? Article e2112267118
K-ATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of K-ATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter-like sulfonylurea receptor (SUR). Although structures of K-ATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic K-ATP (hK(ATP)) structures with an open pore at 3.1- to 4.0-angstrom resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hK(ATP) exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.
Lewis TS, Sokolova V, Jung H, Ng H, Tan DY
Show All Authors

Structural basis of chromatin regulation by histone variant H2A.Z

NUCLEIC ACIDS RESEARCH 2021 NOV 8; 49(19):11379-11391
The importance of histone variant H2A.Z in transcription regulation has been well established, yet its mechanism-of-action remains enigmatic. Conflicting evidence exists in support of both an activating and a repressive role of H2A.Z in transcription. Here we report cryo-electron microscopy (cryo-EM) structures of nucleosomes and chromatin fibers containing H2A.Z and those containing canonical H2A. The structures show that H2A.Z incorporation results in substantial structural changes in both nucleosome and chromatin fiber. While H2A.Z increases the mobility of DNA terminus in nucleosomes, it simultaneously enables nucleosome arrays to form a more regular and condensed chromatin fiber. We also demonstrated that H2A.Z's ability to enhance nucleosomal DNA mobility is largely attributed to its characteristic shorter C-terminus. Our study provides the structural basis for H2A.Z-mediated chromatin regulation, showing that the increase flexibility of the DNA termini in H2A.Z nucleosomes is central to its dual-functions in chromatin regulation and in transcription.