Skip to main content

Publications search

Found 37048 matches. Displaying 601-610
Al-Massadi O, Dieguez C, Schneeberger M, Lopez M, Schwaninger M, Prevot V, Nogueiras R
Show All Authors

Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis

NATURE REVIEWS ENDOCRINOLOGY
Melanin-concentrating hormone (MCH) integrates physiological functions and mood states associated with energy and glucose homeostasis. In this Review, Al-Massadi et al. describe how MCH regulates the hedonic component of food intake and discuss its potential as a therapeutic target. Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Fenk LM, Kim AJ, Maimon G
Show All Authors

Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns

CURRENT BIOLOGY 2021 OCT 25; 31(20):4608-+
From mammals to insects, locomotion has been shown to strongly modulate visual-system physiology. Does the manner in which a locomotor act is initiated change the modulation observed? We performed patchclamp recordings from motion-sensitive visual neurons in tethered, flying Drosophila. We observed motorrelated signals in flies performing flight turns in rapid response to looming discs and also during spontaneous turns, but motor-related signals were weak or non-existent in the context of turns made in response to brief pulses of unidirectional visual motion (i.e., optomotor responses). Thus, the act of a locomotor turn is variably associated with modulation of visual processing. These results can be understood via the following principle: suppress visual responses during course-changing, but not course-stabilizing, navigational turns. This principle is likely to apply broadly-even to mammals-whenever visual cells whose activity helps to stabilize a locomotor trajectory or the visual gaze angle are targeted for motor modulation.
Boisson-Dupuis S, Bustamante J
Show All Authors

Mycobacterial diseases in patients with inborn errors of immunity

CURRENT OPINION IN IMMUNOLOGY 2021 OCT; 72(?):262-271
Clinical disease caused by the agent of tuberculosis, Mycobacterium tuberculosis, and by less virulent mycobacteria, such as bacillus Calmette-Guerin (BCG) vaccines and environmental mycobacteria, can result from inborn errors of immunity (IEIs). IEIs underlie more than 450 conditions, each associated with an impairment of the development and/or function of hematopoietic and/or non-hematopoietic cells involved in host defense. Only a minority of IEIs confer predisposition to mycobacterial disease. The IEIs underlying susceptibility to bona fide tuberculosis are less well delineated than those responsible for susceptibility to less virulent mycobacteria. However, all these IEIs share a defining feature: the impairment of immunity mediated by interferon gamma (IFN-gamma). More profound IFN-gamma deficiency is associated with a greater vulnerability to weakly virulent mycobacteria, whereas more selective IFN-gamma deficiency is associated with a more selective predisposition to mycobacterial disease. We review here recent progress in the study of IEIs underlying mycobacterial diseases.
Jiang HS, Ghose P, Han HF, Wu YZ, Tsai YY, Lin HC, Tseng WC, Wu JC, Shaham S, Wu YC
Show All Authors

BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription

DEVELOPMENT 2021 OCT; 148(20):? Article dev193995
Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.
Santarossa CC, Mickolajczyk KJ, Steinman JB, Urnavicius L, Chen N, Hirata Y, Fukase Y, Coudray N, Ekiert DC, Bhabha G, Kapoor TM
Show All Authors

Targeting allostery in the Dynein motor domain with small molecule inhibitors

CELL CHEMICAL BIOLOGY 2021 OCT 21; 28(10):1460-+
Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well -characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.
Philippot Q, Casanova JL, Puel A
Show All Authors

Candidiasis in patients with APS-1: low IL-17, high IFN-gamma, or both?

CURRENT OPINION IN IMMUNOLOGY 2021 OCT; 72(?):318-323
Chronic mucocutaneous candidiasis (CMC) is one of the earliest and most frequent clinical manifestations of autosomal recessive autoimmune polyendocrine syndrome type 1 (APS1), a monogenic inborn error of immunity caused by deleterious variants of the autoimmune regulator (AIRE) gene. APS-1 patients suffer from various autoimmune diseases, due to the defective thymic deletion of autoreactive T cells, and the development of a large range of autoantibodies (auto-Abs) against various tissue antigens, and some cytokines. The mechanisms underlying CMC remained elusive for many years, until the description in 2010 of high serum titers of neutralizing auto-Abs against IL-17A, IL-17F, and/or IL-22, which are present in almost all APS-1 patients. Excessively high mucosal concentrations of IFN-gamma were recently proposed as an alternative mechanism for CMC in APS-1.
Doane AS, Chu CS, Di Giammartino DC, Rivas MA, Hellmuth JC, Jiang YW, Yusufova N, Alonso A, Roeder RG, Apostolou E, Melnick AM, Elemento O
Show All Authors

OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity

NATURE IMMUNOLOGY 2021 OCT; 22(10):1327-+
During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCin GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions. Elemento, Melnick and colleagues examine the chromatin and transcriptional changes that occur during differentiation of human primary B cells into antibody-secreting cells. In naive B cells, the transcription factor OCT2 is preloaded at high-affinity super-enhancer sites present in repressed 'silent' chromatin; upon activation, OCis recruited to these regions, where it facilitates arrays of OCT2 binding to lower-affinity octamer motifs, leading to active formation of germinal center B cell-specific super-enhancers.
Dutta E, DeJesus MA, Ruecker N, Zaveri A, Koh EI, Sassetti CM, Schnappinger D, Ioerger TR
Show All Authors

An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence

PLOS ONE 2021 OCT 1; 16(10):? Article e0257911
Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.
Su HC, Casanova JL
Show All Authors

Editorial overview: Human inborn errors of immunity to infection

CURRENT OPINION IN IMMUNOLOGY 2021 OCT; 72(?):3-5
Baez-Mendoza R, Vazquez Y, Mastrobattista EP, Williams ZM
Show All Authors

Neuronal Circuits for Social Decision-Making and Their Clinical Implications

FRONTIERS IN NEUROSCIENCE 2021 OCT 1; 15(?):? Article 720294
Social living facilitates individual access to rewards, cognitive resources, and objects that would not be otherwise accessible. There are, however, some drawbacks to social living, particularly when competing for scarce resources. Furthermore, variability in our ability to make social decisions can be associated with neuropsychiatric disorders. The neuronal mechanisms underlying social decision-making are beginning to be understood. The momentum to study this phenomenon has been partially carried over by the study of economic decision-making. Yet, because of the similarities between these different types of decision-making, it is unclear what is a social decision. Here, we propose a definition of social decision-making as choices taken in a context where one or more conspecifics are involved in the decision or the consequences of it. Social decisions can be conceptualized as complex economic decisions since they are based on the subjective preferences between different goods. During social decisions, individuals choose based on their internal value estimate of the different alternatives. These are complex decisions given that conspecifics beliefs or actions could modify the subject's internal valuations at every choice. Here, we first review recent developments in our collective understanding of the neuronal mechanisms and circuits of social decision-making in primates. We then review literature characterizing populations with neuropsychiatric disorders showing deficits in social decision-making and the underlying neuronal circuitries associated with these deficits.