Skip to main content

Publications search

Found 37443 matches. Displaying 771-780
Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Amancio AM, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D
Show All Authors

A partial form of inherited human USP18 deficiency underlies infection and inflammation (opens in new window)

JOURNAL OF EXPERIMENTAL MEDICINE 2022 MAR 8; 219(4):? Article e20211273
Show Abstract
Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I-mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-gamma-dependent induction of IL-12 and IL-23 is reduced owing to IFN-I-mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease. Martin-Fernandez et al. describe patients with partial USP18 deficiency, which underlies both type I interferonopathy and Mendelian susceptibility to mycobacterial disease (MSMD). This work delineates the lack of negative regulation of the IFN-I signaling pathway leading to depression of the IFN-gamma-IL12 loop as a cause of MSMD.
Gleicher N, Patrizio P, Orvieto R
Show All Authors

How Not to Introduce Laboratory Tests to Clinical Practice: Preimplantation Genetic Testing for Aneuploidy (opens in new window)

CLINICAL CHEMISTRY 2022 MAR 31; 68(4):501-503
Show Abstract
Caradonna SG, Einhorn NR, Saudagar V, Khalil H, Petty GH, Lihagen A, LeFloch C, Lee FS, Akil H, Guidotti A, McEwen BS, Gatta E, Marrocco J
Show All Authors

Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene (opens in new window)

TRANSLATIONAL PSYCHIATRY 2022 MAR 16; 12(1):? Article 109
Show Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Va166Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1(C) and 1(F) of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Ryan PA, McGrath D, Euler CW
Show All Authors

Watch your Strep: Streptococcus pyogenes is a preventable cause of maternal death (opens in new window)

FUTURE MICROBIOLOGY 2022 MAR; 17(5):319-323
Show Abstract
Sharma SK, Mack KN, Piersigilli A, Pourat J, Edwards KJ, Keinanen O, Jiao MS, Zhao HY, White B, Brooks CL, de Stanchina E, Madiyalakan MR, Hollingsworth MA, Radhakrishnan P, Lewis JS, Zeglis BM
Show All Authors

ImmunoPET of Ovarian and Pancreatic Cancer with AR9.6, a Novel MUC16-Targeted Therapeutic Antibody (opens in new window)

CLINICAL CANCER RESEARCH 2022 MAR 1; 28(5):948-959
Show Abstract
Purpose: Advances in our understanding of the contribution of aberrant glycosylation to the pro-oncogenic signaling and metastasis of tumor cells have reinvigorated the development of mucin-targeted therapies. Here, we validate the tumor-targeting ability of a novel monoclonal antibody (mAb), AR9.6, that binds MUC16 and abrogates downstream oncogenic signaling to confer a therapeutic response. Experimental Design: The in vitro and ex vivo validation of the binding of AR9.6 to MUC16 was achieved via flow cytometry, radioligand binding assay (RBA), and immunohistochemistry (IHC). The in vivo MUC16 targeting of AR9.6 was validated by creating a Zr-89-labeled radioimmunoconjugate of the mAb and utilizing immunoPET and ex vivo biodistribution studies in xenograft models of human ovarian and pancreatic cancer. Results: Flow cytometry, RBA, and IHC revealed that AR9.6 binds to ovarian and pancreatic cancer cells in an MUC16-dependent manner. The in vivo radiopharmacologic profile of Zr-89-labeled AR9.6 in mice bearing ovarian and pancreatic cancer xenografts confirmed the MUC16-dependent tumor targeting by the radioimmunoconjugate. Radioactivity uptake was also observed in the distant lymph nodes (LNs) of mice bearing xenografts with high levels of MUC16 expression (i.e., OVCAR3 and Capan-2). IHC analyses of these PET-positive LNs highlighted the presence of shed antigen as well as necrotic, phagocytized, and actively infiltrating neoplastic cells. The humanization of AR9.6 did not compromise its ability to target MUC16-expressing tumors. Conclusions: The unique therapeutic mechanism of AR9.6 combined with its excellent in vivo tumor targeting makes it a highly promising theranostic agent. huAR9.6 is poised for clinical translation to impact the management of metastatic ovarian and pancreatic cancers.
Puel A, Bastard P, Bustamante J, Casanova JL
Show All Authors

Human autoantibodies underlying infectious diseases (opens in new window)

JOURNAL OF EXPERIMENTAL MEDICINE 2022 MAR 23; 219(4):? Article e20211387
Show Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Chung DJ, Sharma S, Rangesa M, DeWolf S, Elhanati Y, Perica K, Young JW
Show All Authors

Langerhans dendritic cell vaccine bearing mRNA-encoded tumor antigens induces antimyeloma immunity after autotransplant (opens in new window)

BLOOD ADVANCES 2022 MAR 8; 6(5):1547-1558
Show Abstract
Posttransplant vaccination targeting residual disease is an immunotherapeutic strategy to improve antigen-specific immune responses and prolong disease-free survival after autologous stem cell transplantation (ASCT) for multiple myeloma (MM). We conducted a phase 1 vaccine trial to determine the safety, toxicity, and immunogenicity of autologous Langerhans-type dendritic cells (LCs) electroporated with CT7, MAGE-A3, and Wilms tumor 1 (WT1) messenger RNA (mRNA), after ASCT for MM. Ten patients received a priming immunization plus 2 boosters at 12, 30, and 90 days, respectively, after ASCT. Vaccines contained 9 x 10(6) mRNA-electroporated LCs. Ten additional patients did not receive LC vaccines but otherwise underwent identical ASCT and supportive care. At 3 months after ASCT, all patients started lenalidomide maintenance therapy. Vaccinated patients developed mild local delayed-type hypersensitivity reactions after booster vaccines, but no toxicities exceeded grade 1. At 1 and 3 months after vaccines, antigen-specific CD4 and CD8 T cells increased secretion of proinflammatory cytokines (interferon-y, interleukin-2, and tumor necrosis factor-alpha) above prevaccine levels, and also upregulated the cytotoxicity marker CD107a. CD4 and CD8 T-cell repertoire analysis showed a trend for increased clonal expansion in the vaccine cohort, which was more pronounced in the CD4 compartment. Although not powered to assess clinical efficacy, treatment responses favored the vaccine arm. Triple antigen-bearing mRNA-electroporated autologous LC vaccination initiated at engraftment after ASCT, in conjunction with standard lenalidomide maintenance therapy for MM, is safe and induces antigen-specific immune reactivity.
Show Abstract
Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, Millard KG, Tolstrup M, Jones RB, Alberto WDC, Lorenzi JCC, Oliveira TY, Kummerle T, Suarez I, Unson-O'Brien C, Nogueira L, Olesen R, Ostergaard L, Nielsen H, Lehmann C, Nussenzweig MC, Fatkenheuer G, Klein F, Caskey M, Sogaard OS
Show All Authors

Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial (opens in new window)

LANCET MICROBE 2022 MAR; 3(3):E203-E214
Show Abstract
Background The administration of broadly neutralising anti-HIV-1 antibodies before latency reversal could facilitate elimination of HIV-1-infected CD4 T cells. We tested this concept by combining the broadly neutralising antibody 3BNC117 in combination with the latency-reversing agent romidepsin in people with HIV-1 who were taking suppressive antiretroviral therapy (ART). Methods We did a randomised, open-label, phase 2A trial at three university hospital centres in Denmark, Germany, and the USA. Eligible participants were virologically suppressed adults aged 18-65 years who were infected with HIV-1 and on ART for at least 18 months, with plasma HIV-1 RNA concentrations of less than 50 copies per mL for at least 12 months, and a CD4 T-cell count of greater than 500 cells per mu L. Participants were randomly assigned (1:1) to receive 3BNC117 plus romidepsin or romidepsin alone in two cycles. All participants received intravenous infusions of romidepsin (5 mg/m(2) given over 120 min) at weeks 0, 1, and 2 (treatment cycle 1) and weeks 8, 9, and 10 (treatment cycle 2). Those in the 3BNC117 plus romidepsin group received an intravenous infusion of 3BNC117 (30 mg/kg given over 60 min) 2 days before each treatment cycle. An analytic treatment interruption (ATI) of ART was done at week 24 in both groups. Our primary endpoint was time to viral rebound during analytic treatment interruption, which was assessed in all participants who completed both treatment cycles and ATI. We used a log-rank test to compare time to viral rebound during analytic treatment interruption between the two groups. This trial is registered with ClinicalTrials. gov, NCT02850016. It is closed to new participants, and all follow-up is complete. Findings Between March 20, 2017, and Aug 14, 2018, 22 people were enrolled and randomly assigned, 11 to the 3BNC117 plus romidepsin group and 11 to the romidepsin group. 19 participants completed both treatment cycles and the ATI: 11 in the 3BNC117 plus romidepsin group and 8 in the romidepsin group. The median time to viral rebound during ATI was 18 days (IQR 14-28) in the 3BNC117 plus romidepsin group and 28 days (21-35) in the romidepsin group B (p=0.0016). Although this difference was significant, prolongation of time to viral rebound was not clinically meaningful in either group. All participants in both groups reported adverse events, but overall the combination of 3BNC117 and romidepsin was safe. Two severe adverse events were observed in the romidepsin group during 48 weeks of follow-up, one of which-increased direct bilirubin-was judged to be related to treatment. Interpretation The combination of 3BNC117 and romidepsin was safe but did not delay viral rebound during analytic treatment interruptions in individuals on long-term ART. The results of our trial could serve as a benchmark for further optimisation of HIV-1 curative strategies among people with HIV-1 who are taking suppressive ART. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Chandar V, Whittaker GR, tenOever BR, Schwartz RE, Cantley L
Show All Authors

Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry (opens in new window)

ELIFE 2022 MAR 23; 11(?):? Article e77444
Show Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.