Skip to main content

Publications search

Found 37048 matches. Displaying 991-1000
Wang YD, Niu YM, Zhang Z, Gable K, Gupta SD, Somashekarappa N, Han GS, Zhao HT, Myasnikov AG, Kalathur RC, Dunn TM, Lee CH
Show All Authors

Structural insights into the regulation of human serine palmitoyltransferase complexes

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2021; 28(3):240-248
Cryo-EM structures of the enzyme complexes catalyzing the rate-limiting step in sphingolipid synthesis reveal mechanisms of substrate recognition and modulation by regulatory subunits. Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 angstrom. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.
Coscia EC, Abutaleb NS, Hostetter B, Seleem MN, Breur GJ, McCain RR, Crain CJ, Slaby O, Capoor MN, McDowell A, Ahmed FS, Vijayanpillai V, Narayanan SK, Coscia MF
Show All Authors

Sheep as a Potential Model of Intradiscal Infection by the Bacterium Cutibacterium acnes

VETERINARY SCIENCES 2021 MAR; 8(3):? Article 48
The anaerobic bacterium Cutibacterium acnes has been increasingly linked to the development of degenerative disc disease (DDD), although causality is yet to be conclusively proven. To better study how this organism could contribute to the aetiology of DDD, improved animal models that are more reflective of human disc anatomy, biology and mechanical properties are required. Against this background, our proof-of concept study aimed to be the first demonstration that C. acnes could be safely administered percutaneously into sheep intervertebral discs (IVDs) for in vivo study. Following our protocol, two sheep were successfully injected with a strain of C. acnes (8.3 x 10(6) CFU/disc) previously recovered from a human degenerative disc. No adverse reactions were noted, and at one-month post inoculation all triplicate infected discs in our first animal grew C. acnes, albeit at a reduced load (5.12 x 10(4) to 6.67 x 10(4) CFU/disc). At six months, no growth was detected in discs from our second animal indicating bacterial clearance. This pilot study has demonstrated the feasibility of safe percutaneous injection of C. acnes into sheep IVDs under fluoroscopic guidance. The design of follow-up sheep studies to investigate the potential of C. acnes to drive pathological changes within infected discs should now be pursued.
Hitchman TD, Bayshtok G, Ceraudo E, Moore AR, Lee C, Jia RB, Wang NT, Pachai MR, Shoushtari AN, Francis JH, Guan YX, Chen J, Chang MT, Taylor BS, Sakmar TP, Huber T, Chi P, Chen Y
Show All Authors

Combined Inhibition of G alpha(q) and MEK Enhances Therapeutic Efficacy in Uveal Melanoma

CLINICAL CANCER RESEARCH 2021 MAR 1; 27(5):1476-1490
Purpose: All uveal melanoma and a fraction of other melanoma subtypes are driven by activation of the G-protein alpha-q (G alpha(q)) pathway. Targeting these melanomas has proven difficult despite advances in the molecular understanding of key driver signaling pathways in the disease pathogenesis. Inhibitors of G alpha(q) have shown promising preclinical results, but their therapeutic activity in distinct G alpha(q) mutational contexts and in vivo have remained elusive. Experimental Design: We used an isogenic melanocytic cellular system to systematically examine hotspot mutations in GNAQ (e.g., G48V, R183Q, Q209L) and CYSLTR2 (L129Q) found in human uveal melanoma. This cellular system and human uveal melanoma cell lines were used in vitro and in in vivo xenograft studies to assess the efficacy of G alpha(q) inhibition as a single agent and in combination with MEK inhibition. Results: We demonstrate that the G alpha(q) inhibitor YM-254890 inhibited downstream signaling and in vitro growth in all mutants. In vivo, YM-254890 slowed tumor growth but did not cause regression in human uveal melanoma xenografts. Through comprehensive transcriptome analysis, we observed that YM-254890 caused inhibition of the MAPK signaling with evidence of rebound by 24 hours and combination treatment of YM-254890 and a MEK inhibitor led to sustained MAPK inhibition. We further demonstrated that the combination caused synergistic growth inhibition in vitro and tumor shrinkage in vivo. Conclusions: These data suggest that the combination of G alpha(q) and MEK inhibition provides a promising therapeutic strategy and improved therapeutic window of broadly targeting G alpha(q) in uveal melanoma. See related commentary by Neelature Sriramareddy and Smalley, p. 1217
Tehlirian C, Peeva E, Kieras E, Scaramozza M, Roberts ES, Singh RSP, Pradhan V, Banerjee A, Garcet S, Xi L, Gale JD, Vincent MS, Krueger J
Show All Authors

Safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of the oral TYK2 inhibitor PF-06826647 in participants with plaque psoriasis: a phase 1, randomised, double-blind, placebo-controlled, parallel-group study

LANCET RHEUMATOLOGY 2021 MAR; 3(3):E204-E213
Background Blockade of tyrosine kinase 2 (TYK2) signalling has previously shown therapeutic potential in the treatment of psoriasis. The primary objective of this study was to assess the safety and tolerability of the TYK2 inhibitor PF-06826647. Methods This phase 1, randomised, double-blind, placebo-controlled, parallel-group study assessed once daily oral dosing of PF-06826647 in participants with plaque psoriasis, at a single clinical research site in the USA. Eligible participants (aged 18-65 years) had plaque psoriasis covering at least 15% of total body surface area and a psoriasis area and severity index (PASI) score of at least 12 at baseline. Participants received PF-06826647 (100 mg or 400 mg), or placebo once daily for 28 days. Using a computer-generated randomisation schedule with a block size of 3, participants were sequentially randomly assigned into two cohorts by the investigator; in the first cohort, participants were randomly assigned in a 2:1 ratio to receive either oral PF-06826647 400 mg or placebo once daily, whereas participants in the second cohort were randomly assigned in a 2:1 ratio to receive either oral PF-06826647 100 mg or placebo once daily. Site, investigator, Pfizer personnel, and participants, were masked to treatment. The primary endpoint was the safety of multiple-dose PF-06826647 in participants with plaque psoriasis. Secondary endpoints were the characterisation of the pharmacokinetics of multiple-dose PF-06826647 in plasma and the change in PASI score at day 28. Safety analysis was done in all participants who received at least one dose of study drug. Efficacy analysis was done in all participants who received at least one dose of randomised study drug, and had a baseline and at least one post-baseline measurement. This study is registered as a randomised, controlled trial with ClinicalTrials.gov, NCT03210961 and is completed. Findings The trial was done between July 14, 2017, and Jan 25, 2019. Overall from 91 participants assessed, 40 participants with moderate-to-severe psoriasis were randomly assigned to treatment (placebo 14 [35%] of 40; PF-06826647 100 mg, 11 [28%] of 40; PF-06826647 400 mg, 15 [38%] of 40). Treatment-emergent adverse events (TEAEs) were reported in 12 (80%) of 15 participants in the PF-06826647 400 mg group, seven (50%) of 14 in the placebo group and five (45%) of 11 in the 100 mg group. All TEAEs were mild in severity, except one moderate TEAE of vomiting reported in the placebo group. There were no deaths, serious TEAEs, severe TEAEs, dose reductions, or temporary discontinuations. Compared with placebo, the change from baseline in PASI score at day 28 showed a significant reduction in least squares mean difference for the PF-06826647 400 mg group (-13.05; 90% CI -18.76 to -7.35; p=0.00077) but not for the PF-06826647 100 mg group (-3.49; -9.48 to 2.50; p=0.33). Both the area under the concentration-time curve over the dosing interval and the maximum concentration increased in a less than dose proportional manner with increasing dose from 100 mg to 400 mg PF-06826647. Interpretation PF-06826647 showed significant improvement in disease activity within 4 weeks of dosing with an acceptable safety profile. PF-06826647 holds promise over conventional oral treatments for psoriasis that have shown limited efficacy or unfavourable safety profiles. Copyright (C) 2020 Elsevier Ltd. All rights reserved.
Mann N, Mzoughi S, Schneider R, Kuhl SJ, Schanze D, Klambt V, Lovric S, Mao YY, Shi SS, Tan WZ, Kuhl M, Onuchic-Whitford AC, Treimer E, Kitzler TM, Kause F, Schumann S, Nakayama M, Buerger F, Shril S, van der Ven AT, Majmundar AJ, Holton KM, Kolb A, Braun DA, Rao J, Jobst-Schwan T, Mildenberger E, Lennert T, Kuechler A, Wieczorek D, Gross O, Ermisch-Omran B, Werberger A, Skalej M, Janecke AR, Soliman NA, Mane SM, Lifton RP, Kadlec J, Guccione E, Schmeisser MJ, Zenker M, Hildebrandt F
Show All Authors

Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY 2021 MAR; 32(3):580-596
Background Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. Methods Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. Results Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. Conclusions Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.
Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, Casanova JL, Quintana-Murci L
Show All Authors

Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years

AMERICAN JOURNAL OF HUMAN GENETICS 2021 MAR 4; 108(3):517-524
Tuberculosis (TB), usually caused by Mycobacterium tuberculosis bacteria, is the first cause of death from an infectious disease at the worldwide scale, yet the mode and tempo of TB pressure on humans remain unknown. The recent discovery that homozygotes for the P1104A polymorphism of TYK2 are at higher risk to develop clinical forms of TB provided the first evidence of a common, monogenic predisposition to TB, offering a unique opportunity to inform on human co-evolution with a deadly pathogen. Here, we investigate the history of human exposure to TB by determining the evolutionary trajectory of the TYK2 P1104A variant in Europe, where TB is considered to be the deadliest documented infectious disease. Leveraging a large dataset of 1,013 ancient human genomes and using an approximate Bayesian computation approach, we find that the P1104A variant originated in the common ancestors of West Eurasians similar to 30,000 years ago. Furthermore, we show that, following large-scale population movements of Anatolian Neolithic farmers and Eurasian steppe herders into Europe, P1104A has markedly fluctuated in frequency over the last 10,000 years of European history, with a dramatic decrease in frequency after the Bronze Age. Our analyses indicate that such a frequency drop is attributable to strong negative selection starting similar to 2,000 years ago, with a relative fitness reduction on homozygotes of 20%, among the highest in the human genome. Together, our results provide genetic evidence that TB has imposed a heavy burden on European health over the last two millennia.
Rostol JT, Xie W, Kuryavyi V, Maguin P, Kao K, Froom R, Patel DJ, Marraffini LA
Show All Authors

The Card1 nuclease provides defence during type III CRISPR immunity

NATURE 2021 FEB 25; 590(7847):624-+
In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain(1,2). Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction endonuclease-like domain(3,4). However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases(5,6), whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.
Showalter K, Spiera R, Magro C, Agius P, Martyanov V, Franks JM, Sharma R, Geiger H, Wood TA, Zhang YX, Hale CR, Finik J, Whitfield ML, Orange DE, Gordon JK
Show All Authors

Machine learning integration of scleroderma histology and gene expression identifies fibroblast polarisation as a hallmark of clinical severity and improvement

ANNALS OF THE RHEUMATIC DISEASES 2021 FEB; 80(2):228-237
Objective We sought to determine histologic and gene expression features of clinical improvement in early diffuse cutaneous systemic sclerosis (dcSSc; scleroderma). Methods Fifty-eight forearm biopsies were evaluated from 26 individuals with dcSSc in two clinical trials. Histologic/immunophenotypic assessments of global severity, alpha-smooth muscle actin (aSMA), CD34, collagen, inflammatory infiltrate, follicles and thickness were compared with gene expression and clinical data. Support vector machine learning was performed using scleroderma gene expression subset (normal-like, fibroproliferative, inflammatory) as classifiers and histology scores as inputs. Comparison of w-vector mean absolute weights was used to identify histologic features most predictive of gene expression subset. We then tested for differential gene expression according to histologic severity and compared those with clinical improvement (according to the Combined Response Index in Systemic Sclerosis). Results aSMA was highest and CD34 lowest in samples with highest local Modified Rodnan Skin Score. CD34 and aSMA changed significantly from baseline to 52 weeks in clinical improvers. CD34 and aSMA were the strongest predictors of gene expression subset, with highest CD34 staining in the normal-like subset (p<0.001) and highest aSMA staining in the inflammatory subset (p=0.016). Analysis of gene expression according to CD34 and aSMA binarised scores identified a 47-gene fibroblast polarisation signature that decreases over time only in improvers (vs non-improvers). Pathway analysis of these genes identified gene expression signatures of inflammatory fibroblasts. Conclusion CD34 and aSMA stains describe distinct fibroblast polarisation states, are associated with gene expression subsets and clinical assessments, and may be useful biomarkers of clinical severity and improvement in dcSSc.
Thornquist SC, Pitsch MJ, Auth CS, Crickmore MA
Show All Authors

Biochemical evidence accumulates across neurons to drive a network-level eruption

MOLECULAR CELL 2021 FEB 18; 81(4):675-+
Neural network computations are usually assumed to emerge from patterns of fast electrical activity. Challenging this view, we show that a male fly's decision to persist in mating hinges on a biochemical computation that enables processing over minutes to hours. Each neuron in a recurrent network contains slightly different internal molecular estimates of mating progress. Protein kinase A (PKA) activity contrasts this internal measurement with input from the other neurons to represent accumulated evidence that the goal of the network has been achieved. When consensus is reached, PKA pushes the network toward a large-scale and synchronized burst of calcium influx that we call an eruption. Eruptions transform continuous deliberation within the network into an all-or-nothing output, after which the male will no longer sacrifice his life to continue mating. Here, biochemical activity, invisible to most large-scale recording techniques, is the key computational currency directing behavior and motivational state.
van Straalen KR, Frew JW
Show All Authors

The Importance of Methodological Rigor in Proof-of-Concept Clinical Trials: A Lesson from Hidradenitis Suppurativa

JOURNAL OF INVESTIGATIVE DERMATOLOGY 2021 FEB; 141(2):429-431