Skip to main content

Publications search

Found 37048 matches. Displaying 1381-1390
Roussarie JP, Yao V, Rodriguez-Rodriguez P, Oughtred R, Rust J, Plautz Z, Kasturia S, Albornoz C, Wang W, Schmidt EF, Dannenfelser R, Tadych A, Brichta L, Barnea-Cramer A, Heintz N, Hof PR, Heiman M, Dolinski K, Flajolet M, Troyanskaya OG, Greengard P
Show All Authors

Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis

NEURON 2020 SEP 9; 107(5):821-835.e12
A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Ab, aging, and neurodegeneration within the most vulnerable neurons in AD.
Gerber A, Roeder RG
Show All Authors

The CTD Is Not Essential for the Post-Initiation Control of RNA Polymerase II Activity

JOURNAL OF MOLECULAR BIOLOGY 2020 SEP 4; 432(19):5489-5498
Interest in the C-terminal domain (CTD) of the RPB1 subunit of the RNA polymerase II (Pol II) has been revived in recent years, owing to its numerous posttranslational modifications and its "phase-separation" properties. A large number of studies have shown that the status of CTD modifications is associated with the activity of Pol II during the transcription cycle. However, because this domain is essential in living cells, the functional requirement of the full CTD for the control of Pol II activity at endogenous mammalian genes has never been addressed directly in living cells. Using an inducible Pol II-degradation system that we previously established, we investigated here the roles of the CTD in the post-initiation control of Pol II. The selective ablation of the RPB1 CTD, post-initiation, at promoter-proximal pause-sites revealed that this domain, and by extension the CTD heptads and their modifications, is functionally neither absolutely required to maintain pausing in the absence of CDK9 activity nor essential for the release of Pol II into productive elongation. (C) 2020 Elsevier Ltd. All rights reserved.
Buda G, Valdez RM, Biagioli G, Olivieri FA, Affranchino N, Bouso C, Lotersztein V, Bogunovic D, Bustamante J, Marti MA
Show All Authors

Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report

ALLERGY ASTHMA AND CLINICAL IMMUNOLOGY 2020 SEP 3; 16(1):? Article 77
Interferon-stimulated gene 15 (ISG15)was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in theISG15gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF)ISG15variants. This case highlights the role ofISG15as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.
de Jong YP, Liang TJ
Show All Authors

Stem cell-derived HCV infection systems illustrate the bright future of human hepatocyte research

GUT 2020 SEP; 69(9):1550-1551
Young JW
Show All Authors

Alternative mechanisms that mediate graft-versus-host disease in allogeneic hematopoietic cell transplants

JOURNAL OF CLINICAL INVESTIGATION 2020 SEP 1; 130(9):4532-4535
Allogeneic hematopoietic cell transplantation (alloHCT) benefits increasing numbers of patients with otherwise lethal diseases. Graft-versus-host disease (GVHD), however, remains one of the most potentially life-threatening complications due to its own comorbidities and the side effects of its treatment. In this issue of the JCI, two groups have turned dogma on its head by providing evidence for alternative mechanisms of acute GVHD (aGVHD) in humans. The principle of donor T cell reactivity elicited by host antigen-presenting cells (APCs) expressing MHC-encoded major HLA disparities or expressing minor histocompatibility antigen (miHA) differences presented by identical HLA molecules remains intact. These reports, however, demonstrate that GVHD can additionally result from peripheral host T cells resident in skin and gut being stimulated against donor APCs in the form of monocyte-derived macrophages. Moreover, these donor monocyte-derived macrophages can themselves mediate cytopathic effects against resident host T cells in skin explants and against a keratinocyte-derived cell line.
Gomes AP, Ilter D, Low V, Endress JE, Fernandez-Garcia J, Rosenzweig A, Schild T, Broekaert D, Ahmed A, Planque M, Elia I, Han J, Kinzig C, Mullarky E, Mutvei AP, Asara J, de Cabo R, Cantley LC, Dephoure N, Fendt SM, Blenis J
Show All Authors

Age-induced accumulation of methylmalonic acid promotes tumour progression

NATURE 2020 SEP; 585(7824):283-287
Ageing in humans is associated with an increase in circulating methylmalonic acid, which induces expression of SOX4 and promotes tumour progression. The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards(1-6). Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy(2,3,7,8). For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing(9-12). Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.
Carlini L, Brittingham GP, Holt LJ, Kapoor TM
Show All Authors

Microtubules Enhance Mesoscale Effective Diffusivity in the Crowded Metaphase Cytoplasm

DEVELOPMENTAL CELL 2020 SEP 14; 54(5): 574-582.e4
Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by similar to 30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.
White RR, Maslov AY, Lee MS, Wilner SE, Levy M, Vijg J
Show All Authors

FOXO3a acts to suppress DNA double-strand break-induced mutations

AGING CELL 2020 SEP; 19(9):? Article e13184
Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, the mechanism(s) underlying the increased longevity associated with these genes remains largely unknown and may involve the regulation of responses to cellular stressors, such as DNA damage. Here, we report that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts (MEFs) treated with agents that induce DNA double-strand breaks (DSBs), that is, clastogens. We show that DSB treatment of both primary human and mouse fibroblasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mutational reporter gene lacZ resulted in an increase in genome rearrangements after bleomycin treatment; conversely, overexpression of human FOXO3a was found to suppress mutation accumulation in response to bleomycin. We also show that overexpression of FOXO3a in human primary fibroblasts decreases DSB-induced gamma H2AX foci. Knocking out FOXO3a in mES cells increased the frequency of homologous recombination and non-homologous end-joining events. These results provide the first direct evidence that FOXO3a plays a role in suppressing genome instability, possibly by suppressing genome rearrangements.
Marrocco J
Show All Authors

Bruce S. McEwen: the evolution of stress

STRESS-THE INTERNATIONAL JOURNAL ON THE BIOLOGY OF STRESS 2020 SEP 2; 23(5):497-498
Kereiakes DJ, Henry TD, DeMaria AN, Bentur O, Carlson M, Yue CS, Martin LH, Midkiff J, Mueller M, Meek T, Garza D, Gibson CM, Coller BS
Show All Authors

First Human Use of RUC-4: A Nonactivating Second-Generation Small-Molecule Platelet Glycoprotein IIb/IIIa (Integrin alpha IIb beta 3) Inhibitor Designed for Subcutaneous Point-of-Care Treatment of ST-Segment-Elevation Myocardial Infarction

JOURNAL OF THE AMERICAN HEART ASSOCIATION 2020 SEP 1; 9(17):? Article e016552
Background: Despite reductions in door-to-balloon times for primary coronary intervention, mortality from ST-segment-elevation myocardial infarction has plateaued. Early pre-primary coronary intervention treatment of ST-segment-elevation myocardial infarction with glycoprotein IIb/IIIa inhibitors improves pre-primary coronary intervention coronary flow, limits infarct size, and improves survival. We report the first human use of a novel glycoprotein IIb/IIIa inhibitor designed for subcutaneous first point-of-care ST-segment-elevation myocardial infarction treatment. Methods and Results: Healthy volunteers and patients with stable coronary artery disease receiving aspirin received escalating doses of RUC-4 or placebo in a sentinel-dose, randomized, blinded fashion. Inhibition of platelet aggregation (IPA) to ADP (20 mu mol/L), RUC-4 blood levels, laboratory evaluations, and clinical assessments were made through 24 hours and at 7 days. Doses were increased until reaching the biologically effective dose (the dose producing >= 80% IPA within 15 minutes, with return toward baseline within 4 hours). In healthy volunteers, 15 minutes after subcutaneous injection, mean +/- SD IPA was 6.9%+7.1% after placebo and 71.8%+/- 15.0% at 0.05 mg/kg (n=6) and 84.7%+/- 16.7% at 0.075 mg/kg (n=6) after RUC-4. IPA diminished over 90 to 120 minutes. In patients with coronary artery disease, 15 minutes after subcutaneous injection of placebo or 0.04 mg/kg (n=2), 0.05 mg/kg (n=6), and 0.075 mg/kg (n=18) of RUC-4, IPA was 14.6%+/- 11.7%, 53.6%+/- 17.0%, 76.9%+/- 10.6%, and 88.9%+/- 12.7%, respectively. RUC-4 blood levels correlated with IPA. Aspirin did not affect IPA or RUC-4 blood levels. Platelet counts were stable and no serious adverse events, bleeding, or injection site reactions were observed. Conclusions: RUC-4 provides rapid, high-grade, limited-duration platelet inhibition following subcutaneous administration that appears to be safe and well tolerated. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NTC03844191.