Skip to main content

Publications search

Found 37048 matches. Displaying 1391-1400
Tovo PA, Garazzino S, Saglio F, Scolfaro C, Bustamante J, Badolato R, Fagioli F
Show All Authors

Successful Hematopoietic Stem Cell Transplantation in a Patient with Complete IFN-gamma Receptor 2 Deficiency: a Case Report and Literature Review

JOURNAL OF CLINICAL IMMUNOLOGY 2020 SEP 10; 40(8):1191-1195
Mendelian susceptibility to mycobacterial diseases (MSMD; Online Mendelian Inheritance in Man, OMIM #209950) is an inborn error of immunity (IEI) characterized by extreme susceptibility to invasive infections sustained by poorly virulent mycobacteria, including Mycobacterium bovis, bacillus Calmette-Guérin (BCG) vaccines, and environmental mycobacteria [1,2,3,4]. M. tuberculosis may also be involved in rare cases [5]. Many genes involved in interferon (IFN)-γ production (IL12B, IL12RB1, IL12RB2, IL23R, TYK2, ISG15, RORC), in response to IFN-γ (IFN-γR1, IFN-γR2, STAT1, JAK1, CYBB), both (IRF8, SPPL2A, NEMO) or IFN-γ itself are responsible for MSDM [4,5,6,7,8]. The clinical features depend on the genotype and the residual activity of IFN-γ.
Fadlallah J, Chentout L, Boisson B, Pouliet A, Masson C, Morin F, Durandy A, Casanova JL, Oksenhendler E, Kracker S
Show All Authors

From Dysgammaglobulinemia to Autosomal-Dominant Activation-Induced Cytidine Deaminase Deficiency: Unraveling an Inherited Immunodeficiency after 50 Years

JOURNAL OF PEDIATRICS 2020 AUG; 223(?):207-211.e1
The genetic investigation of a family presenting with a dominant form of hyper IgM syndrome published in 1963 and 1975 revealed a R190X nonsense mutation in activation-induced cytidine deaminase. This report illustrates the progress made over 6 decades in the characterization of primary immunodeficiencies, from immunochemistry to whole-exome sequencing.
Zhou Y, Liang YP, Kreek MJ
Show All Authors

mTORC1 pathway is involved in the kappa opioid receptor activation-induced increase in excessive alcohol drinking in mice

PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR 2020 AUG; 195(?):? Article 172954
KOP-r agonist U50,488H produces strong aversion and anxiety/depression-like behaviors that enhance alcohol intake and promote alcohol seeking and relapse-like drinking in rodents. Mammalian target of rapamycin complex 1 (mTORC1) pathway in mouse striatum is highly involved in excessive alcohol intake and seeking, and in the U50,488H-induced conditioned place aversion. Therefore, we hypothesized that KOP-r activation increases alcohol consumption through the mTORC1 activation. This study focuses on: (1) how chronic excessive alcohol drinking (4-day drinking-in-the-dark paradigm followed by 3-week chronic intermittent access drinking paradigm [two-bottle choice, 24-h access every other day]) affected nuclear transcript levels of the mTORC1 pathway genes in mouse nucleus accumbens shell (NAcs), using transcriptome-wide RNA sequencing analysis; and (2) whether selective mTORC1 inhibitor rapamycin could alter excessive alcohol drinking and prevent U50,488H-promoted alcohol intake. Thirteen nuclear transcripts of mTORC1 pathway genes showed significant up-regulation in the NAcs, with two genes down-regulated, after excessive alcohol drinking, suggesting the mTORC1 pathway was profoundly disrupted. Single administration of rapamycin decreased alcohol drinking in a dose-dependent manner. U50,488H increased alcohol drinking, and pretreatment with rapamycin, at a dose lower than effective doses, blocked the U50,488H-promoted alcohol intake in a dose-dependent manner, indicating a mTORC1-mediated mechanism. Our results provide supportive and direct evidence relevant to the transcriptional profiling of the critical mTORC1 genes in mouse NAc shell: with functional and pharmacological effects of rapamycin, altered nuclear transcripts in the mTORC1 signaling pathway after excessive alcohol drinking may contribute to increased alcohol intake triggered by KOP-r activation.
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao TY, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu PW, Venkataraman A, Park A, Mohanty S, Wang HW, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A
Show All Authors

Longitudinal analyses reveal immunological misfiring in severe COVID-19

NATURE 2020 AUG; 584(7821):463-469
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)(1-4). However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories. A longitudinal analysis of immune responses in patients with moderate or severe COVID-19 identifies a maladapted immune response profile linked to severe disease.
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao TY, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu PW, Venkataraman A, Park A, Mohanty S, Wang HW, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A, Obaid A, Lu-Culligan A, Nelson A, Brito A, Nunez A, Martin A, Watkins A, Geng B, Kalinich C, Harden C, Todeasa C, Jensen C, Kim D, McDonald D, Shepard D, Courchaine E, White EB, Song E, Silva E, Kudo E, DeIuliis G, Rahming H, Park HJ, Matos I, Nouws J, Valdez J, Fauver J, Lim J, Rose KA, Anastasio K, Brower K, Glick L, Sharma L, Sewanan L, Knaggs L, Minasyan M, Batsu M, Petrone M, Kuang M, Nakahata M, Campbell M, Linehan M, Askenase MH, Simonov M, Smolgovsky M, Sonnert N, Naushad N, Vijayakumar P, Martinello R, Datta R, Handoko R, Bermejo S, Prophet S, Bickerton S, Velazquez S, Alpert T, Rice T, Khoury-Hanold W, Peng XH, Yang YX, Cao YY, Strong Y
Show All Authors

Longitudinal analyses reveal immunological misfiring in severe COVID-19

NATURE 2020 AUG 20; 584(7821):463-469
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)(1-4). However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.
Floyd R, Michel AO, Piersigilli A, Aronowitz E, Voss HU, Arbona RJR
Show All Authors

Ethmoidal meningoencephalocele in a C57BL/6J mouse

LABORATORY ANIMALS 2020 AUG 12; ?(?):? Article 0023677220944449
An otherwise healthy two-month-old female C57BL/6J mouse presented with a left-sided head tilt. Differential diagnoses included idiopathic necrotizing arteritis, bacterial otitis media/interna (Pasteurella pneumotropica,Pseudomonas aeruginosa,Streptococcus sp.,Mycoplasma pulmonisandBurkholderia gladioli), encephalitis, an abscess, neoplasia, a congenital malformation and an accidental or iatrogenic head trauma. Magnetic resonance imaging (MRI) revealed a large space-occupying right olfactory lobe intra-axial lesion with severe secondary left-sided subfalcine herniation. Following imaging, the animal was euthanized due to poor prognosis. Histopathologic examination revealed a unilateral, full-thickness bone defect at the base of the cribriform plate and nasal conchae dysplasia, resulting in the herniation of the olfactory bulb into the nasal cavity. There was also a left midline-shift of the frontal cortex and moderate catarrhal sinusitis in the left mandibular sinus. The MRI and histopathologic changes are consistent with a congenital malformation of the nasal cavity and frontal aspect of the skull known as an ethmoidal meningoencephalocele. Encephaloceles are rare abnormalities caused by herniation of contents of the brain through a defect in the skull which occur due to disruption of the neural tube closure at the level anterior neuropore or secondary to trauma, surgical complications, cleft palate or increased intracranial pressure. The etiology is incompletely understood but hypotheses include genetics, vitamin deficiency, teratogens, infectious agents and environmental factors. Ethmoidal encephaloceles have been reported in multiple species including humans but have not been reported previously in mice. There are multiple models for spontaneous and induced craniofacial malformation in mice, but none described for ethmoidal encephaloceles.
Huang J, Zhou J, Ghinnagow R, Seki T, Iketani S, Soulard D, Paczkowski P, Tsuji Y, MacKay S, Cruz LJ, Trottein F, Tsuji M
Show All Authors

Targeted Co-delivery of Tumor Antigen and alpha-Galactosylceramide to CD141(+) Dendritic Cells Induces a Potent Tumor Antigen-Specific Human CD8(+) T Cell Response in Human Immune System Mice

FRONTIERS IN IMMUNOLOGY 2020 AUG 18; 11(?):? Article 2043
Active co-delivery of tumor antigens (Ag) and alpha-galactosylceramide (alpha-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8 alpha(+) dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141(+) (BDCA3(+)) DCs - the equivalent of murine CD8 alpha(+) DCs - and deliver both tumor Ag (Melan A) and alpha-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functionaliNKT cells and CD8(+) T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141(+) DCs andiNKT cells and ultimately elicited a potent Melan-A-specific CD8(+) T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8(+) T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of humaniNKT cells to license cross-priming DCsin vivoand adds a new dimension to the current strategy of cancer vaccine development.
Dobenecker MW, Marcello J, Becker A, Rudensky E, Bhanu NV, Carrol T, Garcia BA, Prinjha R, Yurchenko V, Tarakhovsky A
Show All Authors

The catalytic domain of the histone methyltransferase NSD2/MMSET is required for the generation of B1 cells in mice

FEBS LETTERS 2020 AUG 9; ?(?):?
Humoral immunity in mammals relies on the function of two developmentally and functionally distinct B-cell subsets-B1 and B2 cells. While B2 cells are responsible for the adaptive response to environmental antigens, B1 cells regulate the production of polyreactive and low-affinity antibodies for innate humoral immunity. The molecular mechanism of B-cell specification into different subsets is understudied. In this study, we identified lysine methyltransferase NSD2 (MMSET/WHSC1) as a critical regulator of B1 cell development. In contrast to its minor impact on B2 cells, deletion of the catalytic domain of NSD2 in primary B cells impairs the generation of B1 lineage. Thus, NSD2, a histone H3 K36 dimethylase, is the first-in-class epigenetic regulator of a B-cell lineage in mice.
Frew JW
Show All Authors

Primary imputation methods impact efficacy results in hidradenitis suppurativa clinical trials

JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 2020 AUG; 83(2):663-665
Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SMY, Shamsi F, Assaad S, Lin ETY, Zhang B, Tsai PC, He MG, Tseng YH, Lin SJ, Hsu YC
Show All Authors

Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells

CELL 2020 AUG 6; 182(3):578-593.e19
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.