Skip to main content

Publications search

Found 37048 matches. Displaying 1491-1500
Gill V, Leibman N, Monette S, Craft DM, Bergman PJ
Show All Authors

Prognostic Indicators and Clinical Outcome in Dogs with Subcutaneous Mast Cell Tumors Treated with Surgery Alone: 43 Cases

JOURNAL OF THE AMERICAN ANIMAL HOSPITAL ASSOCIATION 2020 JUL-AUG; 56(4):215-225
The purpose of this study was to determine if clinical findings, histologic grade, or other histologic features were associated with clinical outcome in dogs with subcutaneous mast cell tumors (MCTs). Medical records of 43 client-owned dogs were retrospectively reviewed, and follow-up information was gathered via phone or follow-up examination. Progression-free survival (PFS), disease-free interval (DFI), and overall survival were calculated. Forty-two and twenty-two dogs, respectively, had grade 2 (Patnaik grading system) or low-grade tumors (two-tier grading system). Median PFS was 1474 days. Median DFI was not reached at >1968 days. Overall median survival time was not reached at >1968 days. In univariate analysis, argyrophilic nucleolar organizer regions (AgNORs), proliferating cell nuclear antigen, and mitotic index were negatively prognostic for PFS whereas Ki-67, proliferating cell nuclear antigen, and microvessel density were negatively prognostic for DFI. In multivariate analysis, AgNORs remained negatively prognostic for PFS. Results suggest that proliferation indices, especially AgNORs, may be useful in predicting the rare poor outcomes in dogs with subcutaneous MCTs. The vast majority of subcutaneous MCTs appear to be low or intermediate grade with excellent outcomes from good local tumor control.
Czarnowicki T, Rosendorff BP, Lebwohl MG
Show All Authors

Apremilast and Systemic Retinoid Combination Treatment for Moderate to Severe Palmoplantar Psoriasis

CUTIS 2020 JUL; 106(1):E15-E17
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P
Show All Authors

AP-1 controls the p11-dependent antidepressant response

MOLECULAR PSYCHIATRY 2020 JUL; 25(7):1364-1381
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Muller PA, Schneeberger M, Matheis F, Wang PTQ, Kerner Z, Ilanges A, Pellegrino K, del Marmol J, Castro TBR, Furuichi M, Perkins M, Han WF, Rao A, Picard AJ, Cross JR, Honda K, de Araujo I, Mucida D
Show All Authors

Microbiota modulate sympathetic neurons via a gut-brain circuit

NATURE 2020 JUL 8; 583(7816):441-446
Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content(1), regulating both physiological intestinal functions such as nutrient absorption and motility(2,3), and brain-wired feeding behaviour(2). It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology(4). Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.
Tomlinson JE, Wolfisberg R, Fahnoe U, Sharma H, Renshaw RW, Nielsen L, Nishiuchi E, Holm C, Dubovi E, Rosenberg BR, Tennant BC, Bukh J, Kapoor A, Divers TJ, Rice CM, Van de Walle GR, Scheel TKH
Show All Authors

Equine pegiviruses cause persistent infection of bone marrow and are not associated with hepatitis

PLOS PATHOGENS 2020 JUL; 16(7):? Article e1008677
Pegiviruses frequently cause persistent infection (as defined by >6 months), but unlike most other Flaviviridae members, no apparent clinical disease. Human pegivirus (HPgV, previously GBV-C) is detectable in 1-4% of healthy individuals and another 5-13% are seropositive. Some evidence for infection of bone marrow and spleen exists. Equine pegivirus 1 (EPgV-1) is not linked to disease, whereas another pegivirus, Theiler's disease-associated virus (TDAV), was identified in an outbreak of acute serum hepatitis (Theiler's disease) in horses. Although no subsequent reports link TDAV to disease, any association with hepatitis has not been formally examined. Here, we characterized EPgV-1 and TDAV tropism, sequence diversity, persistence and association with liver disease in horses. Among more than 20 tissue types, we consistently detected high viral loads only in serum, bone marrow and spleen, and viral RNA replication was consistently identified in bone marrow. PBMCs and lymph nodes, but not liver, were sporadically positive. To exclude potential effects of co-infecting agents in experimental infections, we constructed full-length consensus cDNA clones; this was enabled by determination of the complete viral genomes, including a novel TDAV 3' terminus. Clone derived RNA transcripts were used for direct intrasplenic inoculation of healthy horses. This led to productive infection detectable from week 2-3 and persisting beyond the 28 weeks of study. We did not observe any clinical signs of illness or elevation of circulating liver enzymes. The polyprotein consensus sequences did not change, suggesting that both clones were fully functional. To our knowledge, this is the first successful extrahepatic viral RNA launch and the first robust reverse genetics system for a pegivirus. In conclusion, equine pegiviruses are bone marrow tropic, cause persistent infection in horses, and are not associated with hepatitis. Based on these findings, it may be appropriate to rename the group of TDAV and related viruses as EPgV-2. Author summary Transmissible hepatitis in horses (Theiler's disease) has been known for 100 years without knowledge of causative infectious agents. Recently, two novel equine pegiviruses (EPgV) were discovered. Whereas EPgV-1 was not associated to disease, the other was identified in an outbreak of acute serum hepatitis and therefore named Theiler's disease-associated virus (TDAV). This finding was surprising since human and monkey pegiviruses typically cause long-term infection without associated clinical disease. Whereas no subsequent reports link TDAV to disease, the original association to hepatitis has not been formally examined. Here, we studied EPgV-1 and TDAV and found that their natural history of infection in horses were remarkably similar. Examination of various tissues identified the bone marrow as the primary site of replication for both viruses with no evidence of replication in the liver. To exclude potential effects of other infectious agents, we developed molecular full-length clones for EPgV-1 and TDAV and were able to initiate infection in horses using derived synthetic viral genetic material. This demonstrated long-term infection, but no association with hepatitis. These findings call into question the connection between TDAV, liver infection, and hepatitis in horses.
Baksh SC, Todorova PK, Gur-Cohen S, Hurwitz B, Ge YJ, Novak JSS, Tierney MT, dela Cruz-Racelis J, Fuchs E, Finley LWS
Show All Authors

Extracellular serine controls epidermal stem cell fate and tumour initiation (vol 22, pg 779, 2020)

NATURE CELL BIOLOGY 2020 JUL; 22(7):779-790
issue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma. We find that oncogenic EpdSCs are serine auxotrophs whose growth and self-renewal require abundant exogenous serine. When extracellular serine is limited, EpdSCs activate de novo serine synthesis, which in turn stimulates α-ketoglutarate-dependent dioxygenases that remove the repressive histone modification H3K27me3 and activate differentiation programmes. Accordingly, serine starvation or enforced α-ketoglutarate production antagonizes squamous cell carcinoma growth. Conversely, blocking serine synthesis or repressing α-ketoglutarate-driven demethylation facilitates malignant progression. Together, these findings reveal that extracellular serine is a critical determinant of EpdSC fate and provide insight into how nutrient availability is integrated with stem cell fate decisions during tumour initiation.
Chiou CC, Wang CL, Luo JD, Liu CY, Ko HW, Yang CT
Show All Authors

Targeted Sequencing of Circulating Cell Free DNA Can Be Used to Monitor Therapeutic Efficacy of Tyrosine Kinase Inhibitors in Non-small Cell Lung Cancer Patients

CANCER GENOMICS & PROTEOMICS 2020 JUL-AUG; 17(4):417-423
Background/Aim: Circulating tumor DNA (ctDNA) bears specific mutations derived from tumor cells. The amount of mutant ctDNA may reflect tumor burden. In this study, we detected epidermal growth factor receptor (EGFR) mutations in ctDNA as a monitoring marker for the response of non-small cell lung cancer (NSCLC) patients to tyrosine kinase inhibitors (TKIs). Patients and Methods: Serial plasma samples from eight NSCLC patients during TKI treatment were collected. Libraries with barcoded aliapters were constructed from ctDNA of these plasma samples using a PCR-based targeted DNA panel. The libraries were then sequenced for measuring EGFR mutations. In addition, carcinoembryonic antigen (CEA) was also measured in these patients. Results: In six patients who suffered disease progression (PD), five had elevated EGFR mutation reads before PD. In the two patients who did not develop PD, EGFR mutations remained undetectable in their plasma. The CEA levels were higher than the cutoff value in most samples and had a poor correlation with disease status. Conclusion: The mutation count of tumor-specific mutations can be a monitoring marker of TKI treatment in NSCLC patients.
Armache A, Yang S, de Paz AM, Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic DJ, Klevorn T, Yue Y, Arslan T, Lin S, Panchenko T, Hrit J, Wang M, Thudium S, Garcia BA, Korb E, Armache KJ, Rothbart SB, Hake SB, Allis CD, Li HT, Josefowicz SZ
Show All Authors

Histone H3.3 phosphorylation amplifies stimulation-induced transcription

NATURE 2020 JUL; 583(7818):852-857
The histone variant H3.3 is phosphorylated at Ser31 in induced genes, and this selective mark stimulates the histone methyltransferase SETD2 and ejects the ZMYND11 repressor, thus revealing a role for histone phosphorylation in amplifying de novo transcription. Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes(1-3). Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription(4-7). However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND11(8,9). We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.
Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao JQ, Wiedmann M, Patel DJ, Marraffini LA
Show All Authors

A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity

SCIENCE 2020 JUL 3; 369(6499):54-59
The CRISPR RNA (crRNA)-guided nuclease Cas13 recognizes complementary viral transcripts to trigger the degradation of both host and viral RNA during the type VI CRISPR-Cas antiviral response. However, how viruses can counteract this immunity is not known. We describe a listeriaphage (phi LS46) encoding an anti-CRISPR protein (AcrVIA1) that inactivates the type VI-A CRISPR system of Listeria seeligeri. Using genetics, biochemistry, and structural biology, we found that AcrVIA1 interacts with the guide-exposed face of Cas13a, preventing access to the target RNA and the conformational changes required for nuclease activation. Unlike inhibitors of DNA-cleaving Cas nucleases, which cause limited immunosuppression and require multiple infections to bypass CRISPR defenses, a single dose of AcrVIA1 delivered by an individual virion completely dismantles type VI-A CRISPR-mediated immunity.
Orange DE, Yao V, Sawicka K, Fak J, Frank MO, Parveen S, Blachere NE, Hale C, Zhang F, Raychaudhuri S, Troyanskaya OG, Darnell RB
Show All Authors

RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares

NEW ENGLAND JOURNAL OF MEDICINE 2020 JUL 16; 383(3):218-228
BackgroundRheumatoid arthritis, like many inflammatory diseases, is characterized by episodes of quiescence and exacerbation (flares). The molecular events leading to flares are unknown. MethodsWe established a clinical and technical protocol for repeated home collection of blood in patients with rheumatoid arthritis to allow for longitudinal RNA sequencing (RNA-seq). Specimens were obtained from 364 time points during eight flares over a period of 4 years in our index patient, as well as from 235 time points during flares in three additional patients. We identified transcripts that were differentially expressed before flares and compared these with data from synovial single-cell RNA-seq. Flow cytometry and sorted-blood-cell RNA-seq in additional patients were used to validate the findings. ResultsConsistent changes were observed in blood transcriptional profiles 1 to 2 weeks before a rheumatoid arthritis flare. B-cell activation was followed by expansion of circulating CD45-CD31-PDPN+ preinflammatory mesenchymal, or PRIME, cells in the blood from patients with rheumatoid arthritis; these cells shared features of inflammatory synovial fibroblasts. Levels of circulating PRIME cells decreased during flares in all 4 patients, and flow cytometry and sorted-cell RNA-seq confirmed the presence of PRIME cells in 19 additional patients with rheumatoid arthritis. ConclusionsLongitudinal genomic analysis of rheumatoid arthritis flares revealed PRIME cells in the blood during the period before a flare and suggested a model in which these cells become activated by B cells in the weeks before a flare and subsequently migrate out of the blood into the synovium. (Funded by the National Institutes of Health and others.) Serial analysis of RNA expression in peripheral blood cells in patients with rheumatoid arthritis in remission showed changes in gene expression that precede and predict clinical flares and could provide an opportunity for intervention to prevent such flares.