Skip to main content

Publications search

Found 37443 matches. Displaying 1561-1570
Talal AH, Sofikitou EM, Jaanimagi U, Zeremski M, Tobin JN, Marianthi M
Show All Authors

A framework for patient-centered telemedicine: Application and lessons learned from vulnerable populations (opens in new window)

JOURNAL OF BIOMEDICAL INFORMATICS 2020 DEC; 112(?):? Article 103622
Show Abstract
Virtual technologies can facilitate clinical monitoring, clinician-patient interactions, and enhance patient centered approaches to healthcare delivery. Telemedicine, two-way communication between a healthcare provider and a patient not in the same physical location, emphasizes patient preference and convenience by substituting the transportation of patients with information transfer. We present a framework for implementation of a comprehensive, dynamic, patient-centered telemedicine network deployed in 12 opioid treatment programs (OTP) located throughout New York State (NYS). The program aims to effectively manage hepatitis C virus (HCV) infection via telemedicine with co-administration of HCV and substance use medications. We have found that the Sociotechnical System model with emphasis on patient-centered factors provides a framework for telemedicine deployment and implementation to a vulnerable population. The issue of interoperability between the telemedicine platform and the electronic health record (EHR) system as well as clinical information retrieval for medical decision-making are challenges with implementation of a comprehensive, dynamic telemedicine system. Targeting telemedicine to a vulnerable population requires additional consideration of trust in the security and confidentiality of the telemedicine system. Our contribution is the valuable lessons learned from implementing a comprehensive, dynamic, patient-centered telemedicine system among an OTP network throughout NYS as applied to a vulnerable population that can be generalized to other difficult-to-reach populations.
Jove V, Gong ZY, Hol FJH, Zhao ZL, Sorrells TR, Carroll TS, Prakash M, McBride CS, Vosshall LB
Show All Authors

Sensory Discrimination of Blood and Floral Nectar by Aedes aegypti Mosquitoes (opens in new window)

NEURON 2020 DEC 23; 108(6):?
Show Abstract
Blood-feeding mosquitoes survive by feeding on nectar for metabolic energy but require a blood meal to develop eggs. Aedes aegypti females must accurately discriminate blood and nectar because each meal promotes mutually exclusive feeding programs with distinct sensory appendages, meal sizes, digestive tract targets, and metabolic fates. We investigated the syringe-like blood-feeding appendage, the stylet, and discovered that sexually dimorphic stylet neurons taste blood. Using pan-neuronal calcium imaging, we found that blood is detected by four functionally distinct stylet neuron classes, each tuned to specific blood components associated with diverse taste qualities. Stylet neurons are insensitive to nectar-specific sugars and respond to glucose only in the presence of additional blood components. The distinction between blood and nectar is therefore encoded in specialized neurons at the very first level of sensory detection in mosquitoes. This innate ability to recognize blood is the basis of vector-borne disease transmission to millions of people worldwide.
Freiwald WA
Show All Authors

Social interaction networks in the primate brain (opens in new window)

CURRENT OPINION IN NEUROBIOLOGY 2020 DEC; 65(?):49-58
Show Abstract
Primate brains have evolved to understand and engage with their social world. Much about the structure of this world can be gleaned from social interactions. Circuits for the analysis of and participation in social interactions have now been mapped. Increased knowledge about their functional specializations and relative spatial locations promises to greatly improve the understanding of the functional organization of the primate social brain. Detailed electrophysiology, as in the case of the face-processing network, of local operations and functional interactions between areas is necessary to uncover neural mechanisms and computation principles of social cognition. New naturalistic behavioral paradigms, behavioral tracking, and new analytical approaches for parallel non-stationary data will be important components toward a neuroscientific theory of primates' interactive minds.
Wang QQ, Conlon EG, Manley JL, Rio DC
Show All Authors

Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains (opens in new window)

GENOME RESEARCH 2020 DEC; 30(12):?
Show Abstract
The GGGGCC hexanucleotide expansion in C9orf72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), yet a clear understanding of how C9 fits into the broader context of ALS/FTD pathology has remained lacking. The repetitive RNA derived from the C9 repeat is known to sequester hnRNPH, a splicing regulator, into insoluble aggregates, resulting in aberrant alternative splicing. Furthermore, hnRNPH insolubility and altered splicing of a robust set of targets have been observed to correlate in C9 and sporadic ALS/FTD patients alike, suggesting that changes along this axis are a core feature of disease pathogenesis. Here, we characterize previously uncategorized RNA splicing defects involving widespread intron retention affecting almost 2000 transcripts in C9ALS/FTD brains exhibiting a high amount of sequestered, insoluble hnRNPH. These intron retention events appear not to alter overall expression levels of the affected transcripts but rather the protein-coding regions. These retained introns affect transcripts in multiple cellular pathways predicted to be involved in C9 as well as sporadic ALS/FTD etiology, including the proteasomal and autophagy systems. The retained intron pre-mRNAs display a number of characteristics, including enrichment of hnRNPH-bound splicing enhancer motifs and a propensity for G-quadruplex (G-Q) formation, linking the defective splicing directly to high amounts of sequestered hnRNPH. Together, our results reveal previously undetected splicing defects in high insoluble hnRNPH-associated C9ALS brains, suggesting a feedback between effective RNA-binding protein dosage and protein quality control in C9, and perhaps all, ALS/FTD.
Morse KW, Heinz NK, Abolade JM, Wright-Chisem JI, Russell LA, Zhang M, Mirza SZ, Orange DE, Figgie MP, Sculco PK, Goodman SM
Show All Authors

Response to Letter to the Editor on: Tranexamic Acid Does Not Reduce the Risk of Transfusion in Rheumatoid Arthritis Patients Undergoing Total Joint Arthroplasty (opens in new window)

JOURNAL OF ARTHROPLASTY 2020 DEC; 35(12):3778-3779
Show Abstract
Seo JS, Zhong P, Liu A, Yan Z, Greengard P
Show All Authors

Elevation of p11 in lateral habenula mediates depression-like behavior (vol 23, pg 1113, 2018) (opens in new window)

MOLECULAR PSYCHIATRY 2020 DEC; 25(12):3451-3452
Show Abstract
Altenberg L, Cohen JE
Show All Authors

Nonconcavity of the spectral radius in Levinger's theorem (opens in new window)

LINEAR ALGEBRA AND ITS APPLICATIONS 2020 DEC 1; 606(?):201-218
Show Abstract
Let A is an element of R-n x n be a nonnegative irreducible square matrix and let r (A) be its spectral radius and Perron-Frobenius eigenvalue. Levinger asserted and several have proven that r(t) := r((1-t)A + tA(T) ) increases over t is an element of [0, 1/2] and decreases over t is an element of [1/2, 1]. It has further been stated that r(t) is concave over t is an element of (0, 1). Here we show that the latter claim is false in general through a number of counterexamples, but prove it is true for A is an element of R-2 x 2, weighted shift matrices (but not cyclic weighted shift matrices), tridiagonal Toeplitz matrices, and the 3-parameter Toeplitz matrices from Fiedler, but not Toeplitz matrices in general. A general characterization of the range of t, or the class of matrices, for which the spectral radius is concave in Levinger's homotopy remains an open problem. (C) 2020 Elsevier Inc. All rights reserved.
Cohen JE, Davis RA, Samorodnitsky G
Show All Authors

Heavy-tailed distributions, correlations, kurtosis and Taylor's Law of fluctuation scaling (opens in new window)

PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2020 DEC 23; 476(2244):? Article 20200610
Show Abstract
Pillai & Meng (Pillai & Meng 2016 Ann. Stat.44, 2089-2097; p. 2091) speculated that 'the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ..'. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor's Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances.
Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, van Oijen AM, O'Donnell ME
Show All Authors

Replisome bypass of a protein-based R-loop block by Pif1 (opens in new window)

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2020 DEC 8; 117(48):30354-30361
Show Abstract
Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multi protein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5 '-3 ' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.
Luchsinger LL, Ransegnola BP, Jin DK, Muecksch F, Weisblum Y, Bao WL, George PJ, Rodriguez M, Tricoche N, Schmidt F, Gao CJ, Jawahar S, Pal M, Schnall E, Zhang H, Strauss D, Yazdanbakhsh K, Hillyer CD, Bieniasz PD, Hatziioannou T
Show All Authors

Serological Assays Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody Activity in Recovered COVID-19 Patients (opens in new window)

JOURNAL OF CLINICAL MICROBIOLOGY 2020 DEC; 58(12):? Article e02005-20
Show Abstract
The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARSCoV-2.