Skip to main content

Publications search

Found 37048 matches. Displaying 1721-1730
Takamatsu S, Ohashi Y, Onoue N, Tajima Y, Imamichi T, Yonezawa S, Morimoto K, Onouchi H, Yamashita Y, Naito S
Show All Authors

Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction

NUCLEIC ACIDS RESEARCH 2020 FEB 28; 48(4):1985-1999
A number of regulatory nascent peptides have been shown to regulate gene expression by causing programmed ribosome stalling during translation. Nascent peptide emerges from the ribosome through the exit tunnel, and one-third of the way along which a-loop structures of ribosomal proteins uL4 and uL22 protrude into the tunnel to form the constriction region. Structural studies have shown interactions between nascent peptides and the exit tunnel components including the constriction region. In eukaryotes, however, there is a lack of genetic studies for the involvement of the constriction region in ribosome stalling. Here, we established transgenic Arabidopsis lines that carry mutations in the beta-loop structure of uL4. Translation analyses using a cell-free translation system derived from the transgenic Arabidopsis carrying the mutant ribosome showed that the uL4 mutations reduced the ribosome stalling of four eukaryotic stalling systems, including those for which stalled structures have been solved. Our data, which showed differential effects of the uL4 mutations depending on the stalling systems, explained the spatial allocations of the nascent peptides at the constriction that were deduced by structural studies. Conversely, our data may predict allocation of the nascent peptide at the constriction of stalling systems for which structural studies are not done.
Spaeth A, Hargrave M
Show All Authors

A Polyaddition Model for the Prebiotic Polymerization of RNA and RNA-Like Polymers

LIFE-BASEL 2020 FEB; 10(2):? Article 12
Implicit in the RNA world hypothesis is that prebiotic RNA synthesis, despite occurring in an environment without biochemical catalysts, produced the long RNA polymers which are essential to the formation of life. In order to investigate the prebiotic formation of long RNA polymers, we consider a general solution of functionally identical monomer units that are capable of bonding to form linear polymers by a step-growth process. Under the assumptions that (1) the solution is well-mixed and (2) bonding/unbonding rates are independent of polymerization state, the concentration of each length of polymer follows the geometric Flory-Schulz distribution. We consider the rate dynamics that produce this equilibrium; connect the rate dynamics, Gibbs free energy of bond formation, and the bonding probability; solve the dynamics in closed form for the representative special case of a Flory-Schulz initial condition; and demonstrate the effects of imposing a maximum polymer length. Afterwards, we derive a lower bound on the error introduced by truncation and compare this lower bound to the actual error found in our simulation. Finally, we suggest methods to connect these theoretical predictions to experimental results.
Levy R, Beziat V, Barbieux C, Puel A, Bourrat E, Casanova JL, Hovnanian A
Show All Authors

Efficacy of Dupilumab for Controlling Severe Atopic Dermatitis in a Patient with Hyper-IgE Syndrome

JOURNAL OF CLINICAL IMMUNOLOGY 2020 FEB; 40(2):418-420
Smith KK, Keyte AL
Show All Authors

Adaptations of the Marsupial Newborn: Birth as an Extreme Environment

ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY 2020 FEB; 303(2):235-249
At birth a mammalian neonate enters an extreme environment compared to the intrauterine environment in which it has grown. This transition may be particularly extreme in marsupials because they are born at an exceedingly altricial state, after an exceptionally short gestation. Their stage of development must be considered embryonic by almost any criteria. Yet at this very early stage of development marsupials must travel to the teat, attach and suckle, and have basic functioning of all major physiological systems. In this article, we review the adaptations of the marsupial neonate for survival at an embryonic state, showing that the neonate exhibits a mosaic of accelerations and delays of various tissues and organs as well as several special adaptations to produce the functioning newborn. We then discuss the development of the craniofacial region, the body axis and limbs in order to detail some of the major changes to development leading to this uniquely configured neonate. We show that marsupial development arises out of a variety of heterochronies (changes in relative timing of events) and heterotopies (changes in location of specific developmental events) at the genetic, cellular and organ level. We argue that these data support hypotheses that many of the specific patterns seen in marsupial development arise from the basic constraint of embryonic energetic and tissue resources. Finally ideas on the evolutionary context of the marsupial developmental strategy are briefly reviewed. Anat Rec, 2019. (c) 2018 Wiley Periodicals, Inc. Anat Rec, 303:235-249, 2020. (c) 2018 American Association for Anatomy
Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallee VP, Xie YB, Masilionis I, Carr AJ, Kottapalli S, Allaj V, Mattar M, Rekhtman N, Xavier JB, Mazutisz L, Poirier JT, Rudin CM, Pe'er D, Massague J
Show All Authors

Regenerative lineages and immune-mediated pruning in lung cancer metastasis

NATURE MEDICINE 2020 FEB; 26(2):259-269
Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to natural killer cells. Loss of developmental stage-specific constraint in macrometastases triggered by natural killer cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis. Single-cell analysis of lung cancer progression uncovers developmental and regenerative programs co-opted by cancer cells and immune-mediated pruning during metastatic outbreak
Yuan ZN, Georgescu R, Bai L, Zhang D, Li HL, O'Donnell ME
Show All Authors

DNA unwinding mechanism of a eukaryotic replicative CMG helicase

NATURE COMMUNICATIONS 2020 FEB 4; 11(1):? Article 688
High-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understanding the unwinding mechanism. The eukaryotic replicative CMG (Cdc45, Mcm2-7, GINS) helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the oligosaccharide/oligonucleotide-binding (OB) fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 angstrom, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a specific steric exclusion process, or even a separation pin, unwinding is achieved via a "dam-and-diversion tunnel" mechanism that does not require specific protein-DNA interaction. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation. The DNA duplex is known to be split apart in a steric exclusion manner during replication, but the specific mechanism has remained unclear. Here the authors present a cryo-EM structure of a eukaryotic replicative CMG helicase on forked DNA, revealing the mechanism of DNA unwinding.
The mu-opioid receptors (MOR, OPRM1) mediate the effects of beta-endorphin and modulate many biological functions including reward processing and addiction. The present study aimed to use bioinformatics to determine OPRM1 brain expression profiles in higher primates and to look for regulatory mechanisms. We used the same computational pipeline to analyze publicly available expression data from postmortem brain regions across humans, chimpanzees, and rhesus macaques. The most intriguing finding was high OPRM1 cerebellar expression in humans and chimpanzees and low expression in macaques. Together with previous reports of low cerebellar OPRM1 expression in mice, this suggests an evolutionary shift in the expression profiles. Bioinformatic analysis of the OPRM1 upstream region revealed a functional CTCF-binding region that evolved from tandem insertions of retrotransposons L1P1 and L1PA1 upstream (-60 kb) of OPRM1. The insertions arose in different time points after the split of small apes from great apes, and their combined sequence is unique. Furthermore, the derived G allele of SNP rs12191876, in the inserted region, is associated with an increased OPRM1 expression in the cerebellum of postmortem human brains (p = 4.7e-5). The derived G allele became the major allele (60-90%) in the populations represented in the 1000 Genomes Project and may be beneficial. This study provides a foundation for building new knowledge about evolutionary differences in OPRM1 brain expression. Further investigations are needed to elucidate the role of the inserted region and its SNPs in OPRM1 expression, and to assess the biological function and relevance of OPRM1 expression in the cerebellum.
He WQ, Wang J, Sheng JY, Zha JM, Graham WV, Turner JR
Show All Authors

Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2020 FEB; 21(3):? Article 993
Intestinal barrier function is required for the maintenance of mucosal homeostasis. Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases. In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain (MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular reorganization of tight junction structure and composition, including occludin endocytosis. In disease states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1 beta), and several related molecules. Of these, TNF has been studied in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has, however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory bowel disease.
Edri Y, Meron E, Yochelis A
Show All Authors

Spatial heterogeneity may form an inverse camel shaped Arnol'd tongue in parametrically forced oscillations

CHAOS 2020 FEB; 30(2):? Article 023120
Frequency locking in forced oscillatory systems typically organizes in "V"-shaped domains in the plane spanned by the forcing frequency and amplitude, the so-called Arnol'd tongues. Here, we show that if the medium is spatially extended and monotonically heterogeneous, e.g., through spatially dependent natural frequency, the resonance tongues can also display "U" and "W" shapes; we refer to the latter as an "inverse camel" shape. We study the generic forced complex Ginzburg-Landau equation for damped oscillations under parametric forcing and, using linear stability analysis and numerical simulations, uncover the mechanisms that lead to these distinct resonance shapes. Additionally, we study the effects of discretization by exploring frequency locking of oscillator chains. Since we study a normal-form equation, the results are model-independent near the onset of oscillations and, therefore, applicable to inherently heterogeneous systems in general, such as the cochlea. The results are also applicable to controlling technological performances in various contexts, such as arrays of mechanical resonators, catalytic surface reactions, and nonlinear optics.
Sun YD, Zhang YX, Aik WS, Yang XC, Marzluff WF, Walz T, Dominski Z, Tong L
Show All Authors

Structure of an active human histone pre-mRNA 3 '-end processing machinery

SCIENCE 2020 FEB 7; 367(6478):700-703
The X-end processing machinery for metazoan replication-dependent histone precursor messenger RNAs (pre-mRNAs) contains the U7 small nuclear ribonucleoprotein and shares the key cleavage module with the canonical cleavage and polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing machinery using 13 recombinant proteins and two RNAs and determined its structure by cryo-electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with one long handle. We captured the pre-mRNA in the active site of the endonuclease, the 73-kilodalton subunit of the cleavage and polyadenylation specificity factor, poised for cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for activation, triggered through the recognition of the duplex between the authentic pre-mRNA and U7 small nuclear RNA (snRNA). Our study also has notable implications for understanding canonical and snRNA 3-end processing.