Skip to main content

Publications search

Found 37048 matches. Displaying 181-190
Arshad H, Siokis A, Franke R, Habib A, Alfonso JCL, Poliakova Y, Lucke E, Michaelis K, Bronstrup M, Meyer-Hermann M, Bilitewski U, Vila J, Abel L, Illig T, Schreiber J, Pessler F
Show All Authors

Reprogramming of Amino Acid Metabolism Differs between Community-Acquired Pneumonia and Infection-Associated Exacerbation of Chronic Obstructive Pulmonary Disease

CELLS 2022 AUG; 11(15):? Article 2283
Amino acids and their metabolites are key regulators of immune responses, and plasma levels may change profoundly during acute disease states. Using targeted metabolomics, we evaluated concentration changes in plasma amino acids and related metabolites in community-acquired pneumonia (CAP, n = 29; compared against healthy controls, n = 33) from presentation to hospital through convalescence. We further aimed to identify biomarkers for acute CAP vs. the clinically potentially similar infection-triggered COPD exacerbation (n = 13). Amino acid metabolism was globally dysregulated in both CAP and COPD. Levels of most amino acids were markedly depressed in acute CAP, and total amino acid concentrations on admission were an accurate biomarker for the differentiation from COPD (AUC = 0.93), as were reduced asparagine and threonine levels (both AUC = 0.92). Reduced tryptophan and histidine levels constituted the most accurate biomarkers for acute CAP vs. controls (AUC = 0.96, 0.94). Only kynurenine, symmetric dimethyl arginine, and phenylalanine levels were increased in acute CAP, and the kynurenine/tryptophan ratio correlated best with clinical recovery and resolution of inflammation. Several amino acids did not reach normal levels by the 6-week follow-up. Glutamate levels were reduced on admission but rose during convalescence to 1.7-fold above levels measured in healthy control. Our data suggest that dysregulated amino acid metabolism in CAP partially persists through clinical recovery and that amino acid metabolism constitutes a source of promising biomarkers for CAP. In particular, total amino acids, asparagine, and threonine may constitute plasma biomarker candidates for the differentiation between CAP and infection-triggered COPD exacerbation and, perhaps, the detection of pneumonia in COPD.
Elango R, Panday A, Lach FP, Willis NA, Nicholson K, Duffey EE, Smogorzewska A, Scully R
Show All Authors

The structure-specific endonuclease complex SLX4-XPF regulates Tus-Ter-induced homologous recombination

NATURE STRUCTURAL & MOLECULAR BIOLOGY 2022 AUG; 29(8):801-+
Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2 '-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process. Elango et al. identify a new class of substrates on which the Fanconi anemia SLX4-XPF nuclease operates to mediate homologous recombination at DNA-protein replication fork barriers and promote cellular tolerance of DNA-protein cross-links.
Chauvineau-Grenier A, Bastard P, Casanova JL, Rossi B
Show All Authors

Autoantibodies Neutralizing Type I INFs May Be Associated with Efficacy of Tocilizumab in COVID-19 Pneumonia

JOURNAL OF CLINICAL IMMUNOLOGY 2022 AUG; 42(6):1107-1110
Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu SX
Show All Authors

Nucleosome-directed replication origin licensing independent of a consensus DNA sequence

NATURE COMMUNICATIONS 2022 AUG 23; 13(1):? Article 4947
Most eukaryotes do not use a consensus DNA sequence as binding sites for the origin recognition complex (ORC) to initiate DNA replication, however budding yeast do. Here the authors show S. cerevisiae ORC can bind nucleosomes near nucleosome-free regions and recruit replicative helicases to form a pre-replication complex independent of the DNA sequence. The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes.
Amin M, Ott J, Wu RL, Postolache TT, Gragnoli C
Show All Authors

Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2022 AUG; 23(15):? Article 8350
The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: alpha-MSH, beta-MSH, and gamma-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naive patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p <= 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.
Castorani MCN, Bell TW, Walter JA, Reuman DC, Cavanaugh KC, Sheppard LW
Show All Authors

Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects

ECOLOGY LETTERS 2022 AUG; 25(8):1854-1868
Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
Narayan NJC, Requena D, Lalazar G, Ramos-Espiritu L, Ng D, Levin S, Shebl B, Wang RS, Hammond WJ, Saltsman JA, Gehart H, Torbenson MS, Clevers H, LaQuaglia MP, Simon SM
Show All Authors

Human liver organoids for disease modeling of fibrolamellar carcinoma

STEM CELL REPORTS 2022 AUG 9; 17(8):1874-1888
Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochem-istry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.
Soto LF, Requena D, Bass JIF
Show All Authors

Epitope-Evaluator: An interactive web application to study predicted T-cell epitopes

PLOS ONE 2022 AUG 26; 17(8):? Article e0273577
Multiple immunoinformatic tools have been developed to predict T-cell epitopes from protein amino acid sequences for different major histocompatibility complex (MHC) alleles. These prediction tools output hundreds of potential peptide candidates which require further processing; however, these tools are either not graphical or not friendly for non-programming users. We present Epitope-Evaluator, a web tool developed in the Shiny/R framework to interactively analyze predicted T-cell epitopes. Epitope-Evaluator contains six tools providing the distribution of epitopes across a selected set of MHC alleles, the promiscuity and conservation of epitopes, and their density and location within antigens. Epitope-Evaluator requires as input the fasta file of protein sequences and the output prediction file coming out from any predictor. By choosing different cutoffs and parameters, users can produce several interactive plots and tables that can be downloaded as JPG and text files, respectively. Using Epitope-Evaluator, we found the HLA-B*40, HLA-B*27:05 and HLA-B*07:02 recognized fewer epitopes from the SARS-CoV-2 proteome than other MHC Class I alleles. We also identified shared epitopes between Delta, Omicron, and Wuhan Spike variants as well as variant-specific epitopes. In summary, Epitope-Evaluator removes the programming barrier and provides intuitive tools, allowing a straightforward interpretation and graphical representations that facilitate the selection of candidate epitopes for experimental evaluation. The web server Epitope-Evaluator is available at https://fuxmanlab.shinyapps.io/Epitope-Evaluator/
Hartweger H, Nussenzweig MC
Show All Authors

CRISPR comes a-knock-in to reprogram antibodies in vivo

NATURE BIOTECHNOLOGY 2022 AUG; 40(8):1183-1184
Reprogramming of antibody responses in mice is achieved via adeno-associated virus delivery of SaCas9, single guide RNA (sgRNA) and a repair template targeting immunoglobulin genes.
Dussex N, Robertson BC, Dalen L, Jarvis ED
Show All Authors

The kakapo (Strigops habroptilus)

TRENDS IN GENETICS 2022 AUG; 38(8):881-882