Skip to main content

Publications search

Found 37387 matches. Displaying 211-220
Müller M, Elek G
Show All Authors

The history of Ervin Bauer's publications on the theory of life

BIOSYSTEMS 2024 JUL; 241(?):? Article 105212
Ervin Bauer (1890-1938) made historical contributions to contemporary biology, provided a new definition of life, defined the contents of theoretical biology. He worked in different countries, perturbed by deep historical events. These historical events necessarily impacted his fate and finally led to the violent loss of his life and the life of his wife. His work and with it his theory of life had a no less complicated history than the history of his personal life. Bauer's main work "Theoretical Biology" was published in 1935 in Russian. The author and his wife Stefania became victims of the Great Purge. They were executed in 1938, all their publications were banned and most copies of "Theoretical Biology" destroyed. Ervin and Stefania Bauer were rehabilitated in 1956 but renewed publication of Bauer's works was delayed. The first reprint edition of "Theoretical Biology" of 1967 was not in Russian, but was a translation into Hungarian, the native language of Bauer. The first Russian reprint of "Theoretical Biology", in which the original Russian chapters are followed by short English summaries, was published in Hungary in 1982. This edition was prepared by Hungarian and Russian scientists. The best-known Russian edition of "Theoretical Biology" was published in 2002 in St. Petersburg. A complete English translation of Bauer's main work "Theoretical Biology" is still outstanding.
Frechou MA, Martin SS, McDermott KD, Huaman EA, Goekhan S, Tome WA, Coen-Cagl...
Show All Authors

Adult neurogenesis improves spatial information encoding in the mouse hippoca...

NATURE COMMUNICATIONS 2024 JUL 30; 15(1):? Article 6410
Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory. Adult neurogenesis is a unique form of neuronal plasticity, involving the genesis and integration of newborn neurons into the mouse dentate gyrus. Here the authors demonstrate that adult neurogenesis improves representations of space in the dentate gyrus by increasing the place-specific responses of mature neurons.
Crow YJ, Casanova JL
Show All Authors

Human life within a narrow range: The lethal ups and downs of type I interfer...

SCIENCE IMMUNOLOGY 2024 JUL 5; 9(97):? Article eadm8185
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy...
Show All Authors

Neural activity ramps in frontal cortex signal extended motivation during lea...

ELIFE 2024 JUL 22; 13(?):? Article RP93983
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Wu QS, Tavazoie SF
Show All Authors

Translational control by VARS in melanoma

NATURE CELL BIOLOGY 2024 JUL; 26(7):1023-1024
Aminoacyl-tRNA synthetases can promote or suppress cancer progression by regulating codon-dependent translation. A study now shows that valine aminoacyl-tRNA synthetase (VARS) promotes therapeutic resistance of melanoma to MAPK pathway inhibitors by enhancing translation of valine-enriched genes, including the fatty acid oxidation gene HADH.
Essex DW, Wang L
Show All Authors

Recent advances in vascular thiol isomerases and redox systems in platelet fu...

JOURNAL OF THROMBOSIS AND HAEMOSTASIS 2024 JUL; 21(7):1806-1818
There have been substantial advances in vascular protein disulfide isomerases (PDIs) in platelet function and thrombosis in recent years. There are 4 known prothrombotic thiol isomerases; PDI, endoplasmic reticulum protein (ERp)57, ERp72, and ERp46, and 1 antithrombotic PDI; transmembrane protein 1. A sixth PDI, ERp5, may exhibit either prothrombotic or antithrombotic properties in platelets. Studies on ERp46 in platelet function and thrombosis provide insight into the mechanisms by which these enzymes function. ERp46-catalyzed disulfide cleavage in the xIIbP3 platelet integrin occurs prior to PDI-catalyzed events to maximally support platelet aggregation. The transmembrane PDI transmembrane protein 1 counterbalances the effect of ERp46 by inhibiting activation of xIIbP3. Recent work on the prototypic PDI found that oxidized PDI supports platelet aggregation. The a ' domain of PDI is constitutively oxidized, possibly by endoplasmic reticulum oxidoreductase-1x. However, the a domain is normally reduced but becomes oxidized under conditions of oxidative stress. In contrast to the role of oxidized PDI in platelet function, reduced PDI downregulates activation of the neutrophil integrin xMP2. Intracellular platelet PDI cooperates with Nox1 and contributes to thromboxane A2 production to support platelet function. Finally, xIIb and von Willebrand factor contain free thiols, which alter the functions of these proteins, although the extent to which the PDIs regulate these functions is unclear. We are beginning to understand the substrates and functions of vascular thiol isomerases and the redox network they form that supports hemostasis and thrombosis. Moreover, the disulfide bonds these enzymes target are being defined. The clinical implications of the knowledge gained are wide-ranging.
Capili B, Anastasi JK
Show All Authors

Methods to Disseminate Nursing Research: A Brief OverviewDeveloping a communi...

AMERICAN JOURNAL OF NURSING 2024 JUL; 124(7):36-39
Editor's note: This is the 22nd article in a series on clinical research by nurses. The series is designed to be used as a resource for nurses to understand the concepts and principles essential to research. Each column will present the concepts that underpin evidence-based practice-from research design to data interpretation. To see all the articles in the series, go to https://links.lww.com/AJN/A204.
Fu Z, MacKinnon R
Show All Authors

Structure of the flotillin complex in a native membrane environment

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2024 JUL 16; 121(29):? Article e2409334121
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) super- family, from cell-- derived vesicles without detergents. It forms a right- handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a beta- strand, and coiled- coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-- independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Castaño D, Wang S, Atencio-Garcia S, Shields EJ, Rico MC, Sharpe H, Bustamant...
Show All Authors

IL-12 drives the differentiation of human T follicular regulatory cells

SCIENCE IMMUNOLOGY 2024 JUL 5; 9(97):? Article eadf2047
T follicular regulatory (T-fr) cells can counteract the B cell helper activity of T follicular helper (T-fh) cells and hinder the production of antibodies against self-antigens or allergens. A mechanistic understanding of the cytokines initiating the differentiation of human regulatory T (T-reg) cells into T-fr cells is still missing. Herein, we report that low doses of the pro-T-fh cytokine interleukin-12 (IL-12) drive the induction of a T-fr cell program on activated human T-reg cells while also preserving their regulatory function. Mechanistically, we found that IL-12 led to STAT4 (signal transducer and activator of transcription 4) phosphorylation and binding to IL-12-driven follicular signature genes. Patients with inborn errors of immunity in the IL12RB1 gene presented with a strong decrease in circulating T-fr cells and produced higher levels of anti-actin autoantibodies in vivo. Overall, this study unveils IL-12 as an inducer of T-fr cell differentiation in vivo and provides an approach for the in vitro generation of human T-fr-like cells.
Veith J, Chaigne T, Svanidze A, Dressler LE, Hoffmann M, Gerhardt B, Judkewit...
Show All Authors

The mechanism for directional hearing in fish

NATURE 2024 JUL 4; 631(8019):?
Locating sound sources such as prey or predators is critical for survival in many vertebrates. Terrestrial vertebrates locate sources by measuring the time delay and intensity difference of sound pressure at each ear 1-5 . Underwater, however, the physics of sound makes interaural cues very small, suggesting that directional hearing in fish should be nearly impossible 6 . Yet, directional hearing has been confirmed behaviourally, although the mechanisms have remained unknown for decades. Several hypotheses have been proposed to explain this remarkable ability, including the possibility that fish evolved an extreme sensitivity to minute interaural differences or that fish might compare sound pressure with particle motion signals 7,8 . However, experimental challenges have long hindered a definitive explanation. Here we empirically test these models in the transparent teleost Danionella cerebrum, one of the smallest vertebrates 9,10 . By selectively controlling pressure and particle motion, we dissect the sensory algorithm underlying directional acoustic startles. We find that both cues are indispensable for this behaviour and that their relative phase controls its direction. Using micro-computed tomography and optical vibrometry, we further show that D. cerebrum has the sensory structures to implement this mechanism. D. cerebrum shares these structures with more than 15% of living vertebrate species, suggesting a widespread mechanism for inferring sound direction. A study demonstrates that the fish Danionella cerebrum is able to discriminate the direction of sound by comparing the relative phase of pressure and particle motion.