Skip to main content

Publications search

Found 37387 matches. Displaying 231-240
Veith J, Chaigne T, Svanidze A, Dressler LE, Hoffmann M, Gerhardt B, Judkewit...
Show All Authors

The mechanism for directional hearing in fish

NATURE 2024 JUL 4; 631(8019):?
Locating sound sources such as prey or predators is critical for survival in many vertebrates. Terrestrial vertebrates locate sources by measuring the time delay and intensity difference of sound pressure at each ear 1-5 . Underwater, however, the physics of sound makes interaural cues very small, suggesting that directional hearing in fish should be nearly impossible 6 . Yet, directional hearing has been confirmed behaviourally, although the mechanisms have remained unknown for decades. Several hypotheses have been proposed to explain this remarkable ability, including the possibility that fish evolved an extreme sensitivity to minute interaural differences or that fish might compare sound pressure with particle motion signals 7,8 . However, experimental challenges have long hindered a definitive explanation. Here we empirically test these models in the transparent teleost Danionella cerebrum, one of the smallest vertebrates 9,10 . By selectively controlling pressure and particle motion, we dissect the sensory algorithm underlying directional acoustic startles. We find that both cues are indispensable for this behaviour and that their relative phase controls its direction. Using micro-computed tomography and optical vibrometry, we further show that D. cerebrum has the sensory structures to implement this mechanism. D. cerebrum shares these structures with more than 15% of living vertebrate species, suggesting a widespread mechanism for inferring sound direction. A study demonstrates that the fish Danionella cerebrum is able to discriminate the direction of sound by comparing the relative phase of pressure and particle motion.
Kay T, Motes-Rodrigo A, Royston A, Richardson TO, Stroeymeyt N, Keller L
Show All Authors

Ant social network structure is highly conserved across species

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 2024 JUL 31; 291(2027):? Article 20240898
The ecological success of social insects makes their colony organization fascinating to scientists studying collective systems. In recent years, the combination of automated behavioural tracking and social network analysis has deepened our understanding of many aspects of colony organization. However, because studies have typically worked with single species, we know little about interspecific variation in network structure. Here, we conduct a comparative network analysis across five ant species from five subfamilies, separated by more than 100 Myr of evolution. We find that social network structure is highly conserved across subfamilies. All species studied form modular networks, with two social communities, a similar distribution of individuals between the two communities, and equivalent mapping of task performance onto the communities. Against this backdrop of organizational similarity, queens of the different species occupied qualitatively distinct network positions. The deep conservation of the two community structure implies that the most fundamental behavioural division of labour in social insects is between workers that stay in the nest to rear brood, and those that leave the nest to forage. This division has parallels across the animal kingdom in systems of biparental care and probably represents the most readily evolvable form of behavioural division of labour.
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li LC, Wang W, Végvá...
Show All Authors

A cell autonomous regulator of neuronal excitability modulates tau in Alzheim...

BRAIN 2024 JUN 11; 147(7):2384-2399
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease.The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease. By modelling neurons from the entorhinal cortex in silico, Rodriguez-Rodriguez et al. obtain evidence suggesting that the proto-oncogene DEK is likely to contribute to the vulnerability of these neurons to Alzheimer's disease. Reducing DEK levels in these neurons in vitro leads to changes reminiscent of early Alzheimer's disease pathology.
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li LC, Wang W, Végvári A, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao VCY, Roussarie JP
Show All Authors

A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons

BRAIN 2024 JUN 11; 147(7):2384-2399
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease.The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease. By modelling neurons from the entorhinal cortex in silico, Rodriguez-Rodriguez et al. obtain evidence suggesting that the proto-oncogene DEK is likely to contribute to the vulnerability of these neurons to Alzheimer's disease. Reducing DEK levels in these neurons in vitro leads to changes reminiscent of early Alzheimer's disease pathology.
Pérez-Mitta G, Sezgin Y, Wang WW, Mackinnon R
Show All Authors

Freestanding bilayer microscope for single-molecule imaging of membrane prote...

SCIENCE ADVANCES 2024 JUN 21; 10(25):? Article eado4722
Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.
Dunlap G, Wagner A, Meednu N, Wang RQ, Zhang F, Ekabe JC, Jonsson AH, Wei K, ...
Show All Authors

Clonal associations between lymphocyte subsets and functional states in rheum...

NATURE COMMUNICATIONS 2024 JUN 11; 15(1):? Article 4991
Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA. Activated B cells and T cells accumulate within joints of patients with rheumatoid arthritis. Here, the authors use single-cell transcriptome and repertoire profiling to identify clonally expanded synovial B cells and T cells and define their phenotypes and predicted cell-cell interactions.
Marin-Valencia I, Kocabas A, Rodriguez-Navas C, Miloushev VZ, González-Rodríg...
Show All Authors

Imaging brain glucose metabolism in vivo reveals propionate as a major anaple...

CELL METABOLISM 2024 JUN 4; 36(6):?
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo . This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Leung NY, Xu CW, Li JSS, Ganguly A, Meyerhof GT, Regimbald-Dumas Y, Lane EA, ...
Show All Authors

Gut tumors in flies alter the taste valence of an anti-tumorigenic bitter com...

CURRENT BIOLOGY 2024 JUN 17; 34(12):?
The sense of taste is essential for survival, as it allows animals to distinguish between foods that are nutritious from those that are toxic. However, innate responses to different tastants can be modulated or even reversed under pathological conditions. Here, we examined whether and how the internal status of an animal impacts taste valence by using Drosophila models of hyperproliferation in the gut. In all three models where we expressed proliferation -inducing transgenes in intestinal stem cells (ISCs), hyperproliferation of ISCs caused a tumor -like phenotype in the gut. While tumor -bearing flies had no deficiency in overall food intake, strikingly, they exhibited an increased gustatory preference for aristolochic acid (ARI), which is a bitter and normally aversive plant -derived chemical. ARI had anti -tumor effects in all three of our gut hyperproliferation models. For other aversive chemicals we tested that are bitter but do not have anti -tumor effects, gut tumors did not affect avoidance behaviors. We demonstrated that bitter -sensing gustatory receptor neurons (GRNs) in tumor -bearing flies respond normally to ARI. Therefore, the internal pathology of gut hyperproliferation affects neural circuits that determine taste valence postsynaptic to GRNs rather than altering taste identity by GRNs. Overall, our data suggest that increased consumption of ARI may represent an attempt at self -medication. Finally, although ARI's potential use as a chemotherapeutic agent is limited by its known toxicity in the liver and kidney, our findings suggest that tumor -bearing flies might be a useful animal model to screen for novel anti -tumor drugs.
Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, ...
Show All Authors

Search for Baryon Number Violation in Top Quark Production and Decay Using Pr...

PHYSICAL REVIEW LETTERS 2024 JUN 13; 132(24):?
A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb-1. Candidate events are selected by requiring two oppositely charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a downtype quark (d, s, or b). The results improve the previous bounds by 3 to 6 orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV
Show All Authors

PD-1 signaling in neonates restrains CD8+T cell function and protects against...

MUCOSAL IMMUNOLOGY 2024 JUN; 17(3):476-490
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-in fl ammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1 -/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-speci fi c CD8 + T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8 + T cells had reduced interferon-gamma (IFN- gamma), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1 -/- neonatal CD8 + T cells had markedly increased production of IFN- gamma and granzyme B compared with B6 neonates. Pdcd1 -/- neonates had increased acute pathology with HMPV or in fl uenza. Pdcd1 -/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8 + T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8 + T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8 + T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.