Skip to main content

Publications search

Found 37443 matches. Displaying 2561-2570
Gallegos ZR, Taus P, Gibbs ZA, McGlynn K, Gomez NC, Davis I, Whitehurst AW
Show All Authors

EWSR1-FLI1 Activation of the Cancer/Testis Antigen FATE1 Promotes Ewing Sarcoma Survival (opens in new window)

MOLECULAR AND CELLULAR BIOLOGY 2019 JUL; 39(14):? Article UNSP e00138-19
Show Abstract
Ewing sarcoma is characterized by a pathognomonic chromosomal translocation that generates the EWSR1-FLI1 chimeric transcription factor. The transcriptional targets of EWSR1-FLI1 that are essential for tumorigenicity are incompletely defined. Here, we found that EWSR1-FLI1 modulates the expression of cancer/testis (CT) antigen genes, whose expression is biased to the testes but is also activated in cancer. Among these CT antigens, fetal and adult testis expressed 1 (FATE1) is most robustly induced. EWSR1-FLI1 associates with the GGAA repeats in the proximal promoter of FATE1, which exhibits accessible chromatin exclusively in mesenchymal progenitor cells (MPCs) and Ewing sarcoma cells. Expression of EWSR1-FLI1 in non-Ewing sarcoma cells and in MPCs enhances FATE1 mRNA and protein expression. Conversely, depletion of EWSR1-FLI1 in Ewing sarcoma cells leads to a loss of FATE1 expression. Importantly, we found that FATE1 is required for survival and anchorage-independent growth in Ewing sarcoma cells via attenuating the accumulation of BNIP3L, a BH3-only protein that is toxic when stabilized. This action appears to be mediated by the E3 ligase RNF183. We propose that engaging FATE1 function can permit the bypass of cell death mechanisms that would otherwise inhibit tumor progression.
Hu QH
Show All Authors

Efficacy and cost-effectiveness of early antiretroviral therapy and (opens in new window)

BMC INFECTIOUS DISEASES 2019 JUL 25; 19(?):? Article 663
Show Abstract
BackgroundBiomedical interventions such as antiretroviral therapy (ART)
Valverde DP, Yu SL, Boggavarapu V, Kumar N, Lees JA, Walz T, Reinisch KM, Melia TJ
Show All Authors

ATG2 transports lipids to promote autophagosome biogenesis (opens in new window)

JOURNAL OF CELL BIOLOGY 2019 JUN; 218(6):1787-1798
Show Abstract
During macroautophagic stress, autophagosomes can be produced continuously and in high numbers. Many different organelles have been reported as potential donor membranes for this sustained autophagosome growth, but specific machinery to support the delivery of lipid to the growing autophagosome membrane has remained unknown. Here we show that the autophagy protein, ATG2, without a clear function since its discovery over 20 yr ago, is in fact a lipid-transfer protein likely operating at the ER-autophagosome interface. ATG2A can bind tens of glycerophospholipids at once and transfers lipids robustly in vitro. An N-terminal fragment of ATG2A that supports lipid transfer in vitro is both necessary and fully sufficient to rescue blocked autophagosome biogenesis in ATG2A/ATG2B KO cells, implying that regulation of lipid homeostasis is the major autophagy-dependent activity of this protein and, by extension, that protein-mediated lipid transfer across contact sites is a principal contributor to autophagosome formation.
Minuesa G, Albanese SK, Xie W, Kazansky Y, Worroll D, Chow A, Schurer A, Park SM, Rotsides CZ, Taggart J, Rizzi A, Naden LN, Chou T, Gourkanti S, Cappel D, Passarelli MC, Fairchild L, Adura C, Glickman JF, Schulman J, Famulare C, Patel M, Eibl JK, Ross GM, Bhattacharya S, Tan DS, Leslie CS, Beuming T, Patel DJ, Goldgur Y, Chodera JD, Kharas MG
Show All Authors

Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia (opens in new window)

NATURE COMMUNICATIONS 2019 JUN 19; 10(?):? Article 2691
Show Abstract
The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.
Shahbazi MN, Siggia ED, Zernicka-Goetz M
Show All Authors

Self-organization of stem cells into embryos: A window on early mammalian development (opens in new window)

SCIENCE 2019 JUN 7; 364(6444):949-951
Show Abstract
Embryonic development is orchestrated by robust and complex regulatory mechanisms acting at different scales of organization. In vivo studies are particularly challenging for mammals after implantation, owing to the small size and inaccessibility of the embryo. The generation of stem cell models of the embryo represents a powerful system with which to dissect this complexity. Control of geometry, modulation of the physical environment, and priming with chemical signals reveal the intrinsic capacity of embryonic stem cells to make patterns. Adding the stem cells for the extraembryonic lineages generates three-dimensional models that are more autonomous from the environment and recapitulate many features of the pre- and postimplantation mouse embryo, including gastrulation. Here, we review the principles of self-organization and how they set cells in motion to create an embryo.
Xu M, Kolding J, Cohen JE
Show All Authors

Sequential analysis and design of fixed-precision sampling of Lake Kariba fishes using Taylor's power law (opens in new window)

CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES 2019 JUN; 76(6):904-917
Show Abstract
Taylor's power law (TPL), which states that the variance of abundance is a power function of mean abundance, has been used to design sampling of agricultural pests and fish species. We show that TPL holds for means and variances of abundance of accumulated fish samples in the fished and unfished areas separately of Lake Kariba (between Zambia and Zimbabwe), measuring abundance indices by number and weight separately. We use TPL parameters estimated from sequentially accumulated samples to update a stopping line of fixed precision 0.1 after each new sample from a sampling day. In these Lake Kariba data, depending on the sampling area and abundance measure, our updated stopping-line method requires 21% to 41% of the number of sampling days and 19% to 40% of the number of samples that are planned a priori and performed under systematic sampling. Our novel method yields mean abundance estimates similar to those from systematic sampling and provides a conservative approach to reaching a fixed sampling precision level with reduced sampling labor and time. Using mixed-effect modeling for cumulative means and variances with either number or weight from both fished and unfished areas, we find that fishing increases the slope of TPL. This study provides the conceptual framework and an empirical case study for implementing a sequential sampling method for fish assemblages of an inland lake. The possible limitations and applications of our method for sampling in other environments are discussed.
Clijsters L, Hoencamp C, Calis JJA, Marzio A, Handgraaf SM, Cuitino MC, Rosenberg BR, Leone G, Pagano M
Show All Authors

Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs (opens in new window)

MOLECULAR CELL 2019 JUN 20; 74(6):1264-1277.e7
Show Abstract
E2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs. In the short term, E2F mutants unable to bind cyclin F remain stable throughout the cell cycle, induce unscheduled transcription in G2 and mitosis, and promote faster entry into the next S phase. However, in the long term, they impair cell fitness. We propose that by restricting E2F activity to the S phase, cyclin F controls one of the main and most critical transcriptional engines of the cell cycle.
Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, Gray PE, Frith K, Mitchell R, Phan TG, Wong M, Campbell DE, Hsu P, Ziegler JB, Peake J, Alvaro F, Picard C, Bustamante J, Neven B, Cant AJ, Uzel G, Arkwright PD, Casanova JL, Su HC, Freeman AF, Shah N, Hickstein DD, Tangye SG, Ma CS
Show All Authors

Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients (opens in new window)

JCI INSIGHT 2019 JUN 6; 4(11):? Article e127527
Show Abstract
Biallelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterized by severe pathogen infections, eczema, allergies, malignancy, and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplant (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of alpha beta T and MAIT cells were reduced, while gamma delta T cells were increased in DOCK8-deficient patients. HSCT improved abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalog of cellular defects in DOCK8-deficient patients and the efficacy of HSCT in correcting these defects, concurrent with improvements in clinical phenotypes. Overall, our findings reveal mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency after HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.
Jin J, Cheng J, Lee KW, Amreen B, McCabe KA, Pitcher C, Liebmann T, Greengard P, Flajolet M
Show All Authors

Cholinergic Neurons of the Medial Septum Are Crucial for Sensorimotor Gating (opens in new window)

JOURNAL OF NEUROSCIENCE 2019 JUN 26; 39(26):5234-5242
Show Abstract
Hypofunction of NMDA receptors has been considered a possible cause for the pathophysiology of schizophrenia. More recently, indirect ways to regulate NMDA that would be less disruptive have been proposed and metabotropic glutamate receptor subtype 5 (mGluR5) represents one such candidate. To characterize the cell populations involved, we demonstrated here that knock-out (KO) of mGluR5 in cholinergic, but not glutamatergic or parvalbumin (PV)-positive GABAergic, neurons reduced prepulse inhibition of the startle response (PPI) and enhanced sensitivity to MK801-induced locomotor activity. Inhibition of cholinergic neurons in the medial septum by DREADD (designer receptors exclusively activated by designer drugs) resulted in reduced PPI further demonstrating the importance of these neurons in sensorimotor gating. Volume imaging and quantification were used to compare PV and cholinergic cell distribution, density, and total cell counts in the different cell-type-specific KO lines. Electrophysiological studies showed reduced NMDA receptormediated currents in cholinergic neurons of the medial septum in mGluR5 KO mice. These results obtained from male and female mice indicate that cholinergic neurons in the medial septum represent a key cell type involved in sensorimotor gating and are relevant to pathologies associated with disrupted sensorimotor gating such as schizophrenia.
Yuferov V, Randesi M, Butelman ER, van den Brink W, Blanken P, van Ree JM, Ott J, Kreek MJ
Show All Authors

Association of variants of prodynorphin promoter 68-bp repeats in caucasians with opioid dependence diagnosis: Effect on age trajectory of heroin use (opens in new window)

NEUROSCIENCE LETTERS 2019 JUN 21; 704(?):100-105
Show Abstract
The dynorphin/kappa opioid receptor (Dyn/KOR) system is involved in reward processing and dysphoria/anhedonia. Exposure to mu-opioid receptor agonists such as heroin increases expression of the prodynorphin gene (PDYN) in the brain. In this study in a Caucasian cohort, we examined the association of the functional PDYN 68-bp repeat polymorphism with opioid use disorders. In this case-control study, 554 subjects with Caucasian ancestry (142 healthy controls, 153 opioid-exposed, but never opioid dependent, NOD, and 259 with an opioid dependence diagnosis, OD) were examined for association of the PDYN 68-bp repeats with the diagnosis of opioid dependence (DSM-IV criteria), with a dimensional measure of heroin exposure (KMSK scale), and age trajectory parameters of heroin use (age of heroin first use, and age of onset of heaviest use). The PDYN 68-bp repeat genotype (classified as: "short-short" [SS], "long-long" [LL], and "short-long" [SL], based on the number of repeats) was not associated with categorical opioid dependence diagnoses. However, the LL genotype was associated with later age of first heroin use than the SS + SL genotype (19 versus 18 years; p < 0.01). This was also confirmed by a significant positive correlation between the number of repeats and the age of first use of heroin, in volunteers with OD (Spearman r = 0.16; p = 0.01). This suggests that the functional PDYN 68-bp repeat genotype is associated with the age of first use of heroin in Caucasians diagnosed with opioid dependence.