Skip to main content

Publications search

Found 37048 matches. Displaying 251-260
Henderson MW, Lima F, Moraes CRP, Ilich A, Huber SC, Barbosa MS, Santos I, Palma AC, Nunes TA, Ulaf RG, Ribeiro LC, Bernardes AF, Bombassaro B, Dertkigil SSJ, Moretti ML, Strickland S, Annichino-Bizzacchi JM, Orsi FA, Mansour E, Velloso LA, Key NS, De Paula EV
Show All Authors

Contact and intrinsic coagulation pathways are activated and associated with adverse clinical outcomes in COVID-19

BLOOD ADVANCES 2022 JUN 14; 6(11):3367-3377
Coagulation activation is a prominent feature of severe acute respiratory syndrome coronavirus 2 (COVID-19) infection. Activation of the contact system and intrinsic pathway has increasingly been implicated in the prothrombotic state observed in both sterile and infectious inflammatory conditions. We therefore sought to assess activation of the contact system and intrinsic pathway in individuals with COVID-19 infection. Baseline plasma levels of protease:serpin complexes indicative of activation of the contact and intrinsic pathways were measured in samples from inpatients with COVID-19 and healthy individuals. Cleaved kininogen, a surrogate for bradykinin release, was measured by enzyme-linked immunosorbent assay, and extrinsic pathway activation was assessed by microvesicle tissue factor-mediated factor Xa (FXa; MVTF) generation. Samples were collected within 24 hours of COVID-19 diagnosis. Thirty patients with COVID-19 and 30 age- and sex-matched controls were enrolled. Contact system and intrinsic pathway activation in COVID-19 was demonstrated by increased plasma levels of FXIIa:C1 esterase inhibitor (C1), kallikrein:C1, FXIa:C1, FXIa:alpha 1-antitrypsin, and FIXa:antithrombin (AT). MVTF levels were also increased in patients with COVID-19. Because FIXa:AT levels were associated with both contact/intrinsic pathway complexes and MVTF, activation of FIX likely occurs through both contact/intrinsic and extrinsic pathways. Among the protease:serpin complexes measured, FIXa:AT complexes were uniquely associated with clinical indices of disease severity, specifically total length of hospitalization, length of intensive care unit stay, and extent of lung computed tomography changes. We conclude that the contact/intrinsic pathway may contribute to the pathogenesis of the prothrombotic state in COVID-19. Larger prospective studies are required to confirm whether FIXa:AT complexes are a clinically useful biomarker of adverse clinical outcomes.
Basu S, Patterson JO, Zeisner TU, Nurse P
Show All Authors

A CDK activity buffer ensures mitotic completion

JOURNAL OF CELL SCIENCE 2022 JUN; 135(12):? Article jcs259626
The eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases (CDKs). CDK activity rises over 50-fold during the cell cycle, from a low level in G1 to a high level in mitosis. However, it is not known whether the entire range of CDK activity is necessary for cell cycle progression, or whether cells can tolerate a reduction in CDK activity level. Here, in fission yeast, we show that sublethal CDK inhibition lengthens the time cells spend in mitosis but does not cause misordering of mitotic events. Maximum attainable CDK activity exceeds the amount necessary for mitosis, and thus forms a CDK activity buffer between sufficient and maximal possible CDK activities. This CDK activity buffer is needed for mitotic completion when CDK activity is compromised, and CDK inhibition only becomes lethal to cells when this buffer is exhausted. Finally, we explore what factors influence this CDK activity buffer, and find that it is influenced by CDK-counteracting phosphatases. Therefore, maximum attainable CDK activity is not necessary for mitosis but provides robustness to CDK activity reduction to ensure mitotic completion.
Lombardo G, Migliore NR, Colombo G, Capodiferro MR, Formenti G, Caprioli M, Moroni E, Caporali L, Lancioni H, Secomandi S, Gallo GR, Costanzo A, Romano A, Garofalo M, Cereda C, Carelli V, Gillespie L, Liu Y, Kiat Y, Marzal A, Lopez-Calderon C, Balbontin J, Mousseau TA, Matyjasiak P, Moller AP, Semino O, Ambrosini R, Bonisoli-Alquati A, Rubolini D, Ferretti L, Achilli A, Gianfranceschi L, Olivieri A, Torroni A
Show All Authors

The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica)

MOLECULAR BIOLOGY AND EVOLUTION 2022 JUN 2; 39(6):? Article msac113
The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.
Zon L, Keller G, Daley GQ, Watt FM, Weissman IL, Fuchs E, Gage FH, Yamanaka S, Rossant J, Morrison S, Temple S, Clevers HC, Srivastava D, Mummery CL, Little M
Show All Authors

ISSCR Presidents look back on their presidency, the evolution of the field, and the Society

STEM CELL REPORTS 2022 JUN 14; 17(6):1237-1244
In celebration of the ISSCR's 20th anniversary we asked past ISSCR presidents the question, "During your presidential year, what key achievements or issue(s) in the field stood out to you?'' The collection of responses provides a glimpse of the evolution of the field and the ISSCR over the past 20 years.
Erdos M, Mironska K, Kareva L, Stavric K, Hasani A, Lanyi A, Kallai J, Marodi L
Show All Authors

A novel mutation in SLC39A7 identified in a patient with autosomal recessive agammaglobulinemia: The impact of the J Project

PEDIATRIC ALLERGY AND IMMUNOLOGY 2022 JUN; 33(6):? Article e13805
Bhatti DL, Medrihan L, Chen MX, Jin J, McCabe KA, Wang W, Azevedo EP, Ledo JH, Kim Y
Show All Authors

Molecular and Cellular Adaptations in Hippocampal Parvalbumin Neurons Mediate Behavioral Responses to Chronic Social Stress

FRONTIERS IN MOLECULAR NEUROSCIENCE 2022 JUN 24; 15(?):? Article 898851
Parvalbumin-expressing interneurons (PV neurons) maintain inhibitory control of local circuits implicated in behavioral responses to environmental stressors. However, the roles of molecular and cellular adaptations in PV neurons in stress susceptibility or resilience have not been clearly established. Here, we show behavioral outcomes of chronic social defeat stress (CSDS) are mediated by differential neuronal activity and gene expression in hippocampal PV neurons in mice. Using in vivo electrophysiology and chemogenetics, we find increased PV neuronal activity in the ventral dentate gyrus is required and sufficient for behavioral susceptibility to CSDS. PV neuron-selective translational profiling indicates mitochondrial oxidative phosphorylation is the most significantly altered pathway in stress-susceptible versus resilient mice. Among differentially expressed genes associated with stress-susceptibility and resilience, we find Ahnak, an endogenous regulator of L-type calcium channels which are implicated in the regulation of mitochondrial function and gene expression. Notably, Ahnak deletion in PV neurons impedes behavioral susceptibility to CSDS. Altogether, these findings indicate behavioral effects of chronic stress can be controlled by selective modulation of PV neuronal activity or a regulator of L-type calcium signaling in PV neurons.
Wang ZJ, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, DaSilva J, Bednarski E, Ben Tanfous T, Raspe R, Yao KH, Lee YE, Chen T, Turroja M, Milard KG, Dizon J, Kaczynska A, Gazumyan A, Oliveira TY, Rice CM, Caskey M, Bieniasz PD, Hatziioannou T, Barnes CO, Nussenzweig MC
Show All Authors

Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins

IMMUNITY 2022 JUN 14; 55(6):998-+
SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD super site, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.
Coffino P, Cheng YF
Show All Authors

Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles

BIOMOLECULES 2022 JUN; 12(6):? Article 764
Allostery-regulation at distant sites is a key concept in biology. The proteasome exhibits multiple forms of allosteric regulation. This regulatory communication can span a distance exceeding 100 angstrom ngstroms and can modulate interactions between the two major proteasome modules: its core particle and regulatory complexes. Allostery can further influence the assembly of the core particle with regulatory particles. In this focused review, known and postulated interactions between these proteasome modules are described. Allostery may explain how cells build and maintain diverse populations of proteasome assemblies and can provide opportunities for therapeutic interventions.
Campbell TM, Liu ZY, Zhang Q, Moncada-Velez M, Covill LE, Zhang P, Darazam IA, Bastard P, Bizien L, Bucciol G, Enoksson SL, Jouanguy E, Karabela SN, Khan T, Kendir-Demirkol Y, Arias AA, Mansouri D, Marits P, Marr N, Migeotte I, Moens L, Ozcelik T, Pellier I, Sendel A, Shahrooei M, Smith CIE, Vandernoot I, Willekens K, Bergman P, Abel L, Cobat A, Casanova JL, Meyts I, Bryceson YT
Show All Authors

Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency

JOURNAL OF EXPERIMENTAL MEDICINE 2022 JUN 15; 219(7):? Article e20220202
Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-beta. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4(+) and CD8(+)T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-beta and compensatory adaptive immunity.
Lebon P, Gelot A, Zhang SY, Casanova JL, Hauw JJ
Show All Authors

Measles Sclerosing Subacute PanEncephalitis (SSPE), an intriguing and ever-present disease: Data, Assumptions and new Perspectives (vol 177, pg 1059, 2021)

REVUE NEUROLOGIQUE 2022 JUN; 178(6):634-634