Skip to main content

Publications search

Found 37173 matches. Displaying 3961-3970
Takacs CN, Andreo U, Belote RL, Pulupa J, Scull MA, Gleason CE, Rice CM, Simon SM
Show All Authors

Green fluorescent protein-tagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress

TRAFFIC 2017 MAR; 18(3):192-204
Apolipoprotein E (ApoE), a component of very-low-density and high-density lipoproteins, participates in many aspects of lipid transport in the bloodstream. Underscoring its important functions, ApoE isoforms have been associated with metabolic and circulatory disease. ApoE is also incorporated into hepatitis C virus (HCV) particles, and promotes their production and infectivity. Live cell imaging analysis of ApoE behavior during secretion from producing cells thus has the potential to reveal important details regarding lipoprotein and HCV particle biogenesis and secretion from cells. However, this approach requires expression of fluorescently tagged ApoE constructs that need to faithfully reproduce known ApoE behaviors. Herein, we evaluate the usefulness of using an ApoE-GFP fusion protein in studying hepatocyte-derived, ApoEcontaining lipoproteins and HCV particles. We show that while ApoE-GFP alone is not sufficient to support infectious HCV production, it nonetheless colocalizes intracellularly and associates with secreted untagged lipoprotein components. Furthermore, its rate of secretion from hepatic cells is indistinguishable from that of untagged ApoE. ApoE-GFP thus represents a useful marker for ApoE-containing hepatic lipoproteins.
Ruecker N, Jansen R, Trujillo C, Puckett S, Jayachandran P, Piroli GG, Frizzell N, Molina H, Rhee KY, Ehrt S
Show All Authors

Fumarase Deficiency Causes Protein and Metabolite Succination and Intoxicates Mycobacterium tuberculosis

CELL CHEMICAL BIOLOGY 2017 MAR 16; 24(3):306-315
Enzymes of central carbon metabolism are essential mediators of Mycobacterium tuberculosis (Mtb) physiology and pathogenicity, but are often perceived to lack sufficient species selectivity to be pursued as potential drug targets. Fumarase (Fum) is an enzyme of the canonical tricarboxylic acid cycle and is dispensable in many organisms. Transposon mutagenesis studies in Mtb, however, indicate that Fum is required for optimal growth. Here, we report the generation and characterization of a genetically engineered Mtb strain in which Fum expression is conditionally regulated. This revealed that Fum deficiency is bactericidal in vitro and during both the acute and chronic phases of mouse infection. This essentiality is linked to marked accumulations of fumarate resulting in protein and metabolite succination, a covalent modification of cysteine thiol residues. These results identify Mtb Fum as a potentially species-specific drug target whose inactivation may kill Mtb through a covalently irreversible form of metabolic toxicity.
Milosevic A, Liebmann T, Knudsen M, Schintu N, Svenningsson P, Greengard P
Show All Authors

Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain

JOURNAL OF COMPARATIVE NEUROLOGY 2017 MAR 1; 525(4):955-975
P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11-KO) in mice results in a depressive-like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole-tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955-975, 2017. (c) 2016 Wiley Periodicals, Inc.
Shima T, Matsui T, Jesmin S, Okamoto M, Soya M, Inoue K, Liu YF, Torres-Aleman I, McEwen BS, Soya H
Show All Authors

Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes

DIABETOLOGIA 2017 MAR; 60(3):597-606
Aims/hypothesis Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. Methods The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. Results OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Conclusion/interprelation Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.
Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant-the mecC gene-was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant.
Gleicher N, Orvieto R
Show All Authors

Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review

JOURNAL OF OVARIAN RESEARCH 2017 MAR 27; 10(?):? Article 21
The hypothesis of preimplantation genetic diagnosis (PGS) was first proposed 20 years ago, suggesting that elimination of aneuploid embryos prior to transfer will improve implantation rates of remaining embryos during in vitro fertilization (IVF), increase pregnancy and live birth rates and reduce miscarriages. The aforementioned improved outcome was based on 5 essential assumptions: (i) Most IVF cycles fail because of aneuploid embryos. (ii) Their elimination prior to embryo transfer will improve IVF outcomes. (iii) A single trophectoderm biopsy (TEB) at blastocyst stage is representative of the whole TE. (iv) TE ploidy reliably represents the inner cell mass (ICM). (v) Ploidy does not change (i. e., self-correct) downstream from blastocyst stage. We aim to offer a review of the aforementioned assumptions and challenge the general hypothesis of PGS. We reviewed 455 publications, which as of January 20, 2017 were listed in PubMed under the search phrase < preimplantation genetic screening (PGS) for aneuploidy>. The literature review was performed by both authors who agreed on the final 55 references. Various reports over the last 18 months have raised significant questions not only about the basic clinical utility of PGS but the biological underpinnings of the hypothesis, the technical ability of a single trophectoderm (TE) biopsy to accurately assess an embryo's ploidy, and suggested that PGS actually negatively affects IVF outcomes while not affecting miscarriage rates. Moreover, due to high rates of false positive diagnoses as a consequence of high mosaicism rates in TE, PGS leads to the discarding of large numbers of normal embryos with potential for normal euploid pregnancies if transferred rather than disposed of. We found all 5 basic assumptions underlying the hypothesis of PGS to be unsupported: (i) The association of embryo aneuploidy with IVF failure has to be reevaluated in view how much more common TE mosaicism is than has until recently been appreciated. (ii) Reliable elimination of presumed aneuploid embryos prior to embryo transfer appears unrealistic. (iii) Mathematical models demonstrate that a single TEB cannot provide reliable information about the whole TE. (iv) TE does not reliably reflect the ICM. (v) Embryos, likely, still have strong innate ability to self0-correct downstream from blastocyst stage, with ICM doing so better than TE. The hypothesis of PGS, therefore, no longer appears supportable. With all 5 basic assumptions underlying the hypothesis of PGS demonstrated to have been mistaken, the hypothesis of PGS, itself, appears to be discredited. Clinical use of PGS for the purpose of IVF outcome improvements should, therefore, going forward be restricted to research studies.
Campbell EA, Kamath S, Rajashankar KR, Wu MY, Darst SA
Show All Authors

Crystal structure of Aquifex aeolicus sigma(N) bound to promoter DNA and the structure of sigma(N)-holoenzyme

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2017 MAR 7; 114(10):E1805-E1814
The bacterial sigma factors confer promoter specificity to the RNA polymerase (RNAP). One alternative sigma factor, sigma(N), is unique in its structure and functional mechanism, forming transcriptionally inactive promoter complexes that require activation by specialized AAA(+) ATPases. We report a 3.4- angstrom resolution X-ray crystal structure of a sigma(N) fragment in complex with its cognate promoter DNA, revealing the molecular details of promoter recognition by sigma(N). The structure allowed us to build and refine an improved sigma(N)-holoenzyme model based on previously published 3.8-angstrom resolution X-ray data. The improved sigma(N)-holoenzyme model reveals a conserved interdomain interface within sigma(N) that, when disrupted by mutations, leads to transcription activity without activator intervention (so-called bypass mutants). Thus, the structure and stability of this interdomain interface are crucial for the role of sigma(N) in blocking transcription activity and in maintaining the activator sensitivity of sigma(N).
Pan YD, Tian T, Park CO, Lofftus SY, Mei SL, Liu X, Luo C, O'Malley JT, Gehad A, Teague JE, Divito SJ, Fuhlbrigge R, Puigserver P, Krueger JG, Hotamisligil GS, Clark RA, Kupper TS
Show All Authors

Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism

NATURE 2017 MAR 9; 543(7644):252-256
Tissue-resident memory T (T-RM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens(1-4). However, the biological pathways that enable the long-term survival of T-RM cells are obscure(4,5). Here we show that mouse CD8(+) T-RM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8(+) T-RM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (T-CM) cells in lymph nodes. In vitro, CD8(+) T-RM cells, but not CD8(+) T-CM cells, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8(+) T-RM cells. The persistence of CD8(+) T-RM cells in the skin was strongly diminished by inhibition of mitochondrial FFA beta-oxidation in vivo. Moreover, skin CD8(+) T-RM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8(+) T-RM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8(+) T-RM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8(+) T-RM cells, and suggest that CD8(+) T-RM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity.
Martel J, Ojcius DM, Chang CJ, Lin CS, Lu CC, Ko YF, Tseng SF, Lai HC, Young JD
Show All Authors

Anti-obesogenic and antidiabetic effects of plants and mushrooms

NATURE REVIEWS ENDOCRINOLOGY 2017 MAR; 13(3):149-160
Obesity is reaching global epidemic proportions as a result of factors such as high-calorie diets and lack of physical exercise. Obesity is now considered to be a medical condition, which not only contributes to the risk of developing type 2 diabetes mellitus, cardiovascular disease and cancer, but also negatively affects longevity and quality of life. To combat this epidemic, anti-obesogenic approaches are required that are safe, widely available and inexpensive. Several plants and mushrooms that are consumed in traditional Chinese medicine or as nutraceuticals contain antioxidants, fibre and other phytochemicals, and have anti-obesogenic and antidiabetic effects through the modulation of diverse cellular and physiological pathways. These effects include appetite reduction, modulation of lipid absorption and metabolism, enhancement of insulin sensitivity, thermogenesis and changes in the gut microbiota. In this Review, we describe the molecular mechanisms that underlie the anti-obesogenic and antidiabetic effects of these plants and mushrooms, and propose that combining these food items with existing anti-obesogenic approaches might help to reduce obesity and its complications.
Tangye SG, Pillay B, Randall KL, Avery DT, Phan TG, Gray P, Ziegler JB, Smart JM, Peake J, Arkwright PD, Hambleton S, Orange J, Goodnow CC, Uzel G, Casanova JL, Reyes SOL, Freeman AF, Su HC, Ma CS
Show All Authors

Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a T(H)2 effector fate at the expense of T(H)1 and T(H)17 cells

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 2017 MAR; 139(3):933-949
Background: Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency caused by autosomal recessive loss-of- function mutations in DOCK8. This disorder is characterized by recurrent cutaneous infections, increased serum IgE levels, and severe atopic disease, including food-induced anaphylaxis. However, the contribution of defects in CD4(+) T cells to disease pathogenesis in these patients has not been thoroughly investigated. Objective: We sought to investigate the phenotype and function of DOCK8-deficient CD4(+) T cells to determine (1) intrinsic and extrinsic CD4 1 T-cell defects and (2) how defects account for the clinical features of DOCK8 deficiency. Methods: We performed in-depth analysis of the CD4(+) T-cell compartment of DOCK8-deficient patients. We enumerated subsets of CD4(+) T helper cells and assessed cytokine production and transcription factor expression. Finally, we determined the levels of IgE specific for staple foods and house dust mite allergens in DOCK8-deficient patients and healthy control subjects. Results: DOCK8-deficient memory CD4 1 T cells were biased toward a T(H)2 type, and this was at the expense of T(H)1 and T(H)17 cells. In vitro polarization of DOCK8-deficient naive CD4(+) T cells revealed the TH2 bias and TH17 defect to be T-cell intrinsic. Examination of allergen-specific IgE revealed plasma IgE from DOCK8-deficient patients is directed against staple food antigens but not house dust mites. Conclusion: Investigations into the DOCK8-deficient CD4(+) T cells provided an explanation for some of the clinical features of this disorder: the T(H)2 bias is likely to contribute to atopic disease, whereas defects in T(H)1 and T(H)17 cells compromise antiviral and antifungal immunity, respectively, explaining the infectious susceptibility of DOCK8-deficient patients.