Skip to main content

Publications search

Found 37173 matches. Displaying 4341-4350
Yu JS, Chen YT, Chiang WF, Hsiao YC, Chu LJ, See LC, Wu CS, Tu HT, Chen HW, Chen CC, Liao WC, Chang YT, Wu CC, Lin CY, Liu SY, Chiou ST, Chia SL, Chang KP, Chien CY, Chang SW, Chang CJ, Young JD, Pao CC, Chang YS, Hartwell LH
Show All Authors

Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 OCT 11; 113(41):11549-11554
Most cases of oral squamous cell carcinoma (OSCC) develop from visible oral potentially malignant disorders (OPMDs). The latter exhibit heterogeneous subtypes with different transformation potentials, complicating the early detection of OSCC during routine visual oral cancer screenings. To develop clinically applicable biomarkers, we collected saliva samples from 96 healthy controls, 103 low-risk OPMDs, 130 high-risk OPMDs, and 131 OSCC subjects. These individuals were enrolled in Taiwan's Oral Cancer Screening Program. We identified 302 protein biomarkers reported in the literature and/or through in-house studies and prioritized 49 proteins for quantification in the saliva samples using multiple reaction monitoring-MS. Twenty-eight proteins were successfully quantified with high confidence. The quantification data from non-OSCC subjects (healthy controls + low-risk OPMDs) and OSCC subjects in the training set were subjected to classification and regression tree analyses, through which we generated a four-protein panel consisting of MMP1, KNG1, ANXA2, and HSPA5. A risk-score scheme was established, and the panel showed high sensitivity (87.5%) and specificity (80.5%) in the test set to distinguish OSCC samples from non-OSCC samples. The risk score >0.4 detected 84% (42/50) of the stage I OSCCs and a significant portion (42%) of the high-risk OPMDs. Moreover, among 88 high-risk OPMD patients with available follow-up results, 18 developed OSCC within 5 y; of them, 77.8% (14/18) had risk scores >0.4. Our four-protein panel may therefore offer a clinically effective tool for detecting OSCC and monitoring high-risk OPMDs through a readily available biofluid.
Xue BK, Leibler S
Show All Authors

Evolutionary learning of adaptation to varying environments through a transgenerational feedback

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 OCT 4; 113(40):11266-11271
Organisms can adapt to a randomly varying environment by creating phenotypic diversity in their population, a phenomenon often referred to as "bet hedging." The favorable level of phenotypic diversity depends on the statistics of environmental variations over timescales of many generations. Could organisms gather such long-term environmental information to adjust their phenotypic diversity? We show that this process can be achieved through a simple and general learning mechanism based on a transgenerational feedback: The phenotype of the parent is progressively reinforced in the distribution of phenotypes among the offspring. The molecular basis of this learning mechanism could be searched for in model organisms showing epigenetic inheritance.
Thinon E, Percher A, Hang HC
Show All Authors

Bioorthogonal Chemical Reporters for Monitoring Unsaturated Fatty-Acylated Proteins

CHEMBIOCHEM 2016 OCT 4; 17(19):1800-1803
Dietary unsaturated fatty acids, such as oleic acid, have been shown to be covalently incorporated into a small subset of proteins, but the generality and diversity of this protein modification has not been studied. We synthesized unsaturated fatty-acid chemical reporters and determined their protein targets in mammalian cells. The reporters can induce the formation of lipid droplets and be incorporated site-specifically onto known fatty-acylated proteins and label many proteins in mammalian cells. Quantitative proteomics analysis revealed that unsaturated fatty acids modify similar protein targets to saturated fatty acids, including several immunity-associated proteins. This demonstrates that unsaturated fatty acids can directly modify many proteins to exert their unique and often beneficial physiological effects in vivo.
Vilarinho S, Sari S, Mazzacuva F, Bilguvar K, Esendagli-Yilmaz G, Jain D, Akyol G, Dalgic B, Gunel M, Clayton PT, Lifton RP
Show All Authors

ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 OCT 4; 113(40):11289-11293
Acyl CoA Oxidase 2 (ACOX2) encodes branched-chain acyl-CoA oxidase, a peroxisomal enzyme believed to be involved in the metabolism of branched-chain fatty acids and bile acid intermediates. Deficiency of this enzyme has not been described previously. We report an 8-y-old male with intermittently elevated transaminase levels, liver fibrosis, mild ataxia, and cognitive impairment. Exome sequencing revealed a previously unidentified homozygous premature termination mutation (p.Y69*) in ACOX2. Immunohistochemistry confirmed the absence of ACOX2 expression in the patient's liver, and biochemical analysis showed marked elevation of intermediate bile acids upstream of ACOX2. These findings define a potentially treatable inborn error of bile acid biosynthesis caused by ACOX2 deficiency.
Chabout J, Sarkar A, Patel SR, Padden T, Dunson DB, Fisher SE, Jarvis ED
Show All Authors

A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice

FRONTIERS IN BEHAVIORAL NEUROSCIENCE 2016 OCT 20; 10(?):? Article 197
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.
Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carra G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R
Show All Authors

Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma

CANCER RESEARCH 2016 OCT; 76(20):6095-6106
Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo. Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss-and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. (C) 2016 AACR.
Chung M, Kim CK, Conceicao T, Aires-De-Sousa M, De Lencastre H, Tomasz A
Show All Authors

Heterogeneous oxacillin-resistant phenotypes and production of PBP2A by oxacillin-susceptible/mecA-positive MRSA strains from Africa

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY 2016 OCT; 71(10):2804-2809
Objectives: Recent surveillance of MRSA colonizing patients and healthcare workers in two African countries (Angola and Sao Tom, and Principe) reported the frequent recovery of oxacillin-susceptible MRSA (OS-MRSA): Staphylococcus aureus strains that gave positive results with the mecA DNA probe, but had low oxacillin MIC values characteristic of susceptible S. aureus. This apparent dissociation of the drug-resistant phenotype from mecA-the primary genetic determinant of resistance-prompted us to perform a more detailed analysis on nine of the African OS-MRSA strains. Methods:Oxacillin MIC values were determined by Etest and population analysis profiles with and without induction of the stringent stress response by mupirocin. Biochemical profiling using SDS-PAGE followed by western blotting was used for the detection of PBP2A protein produced. Results:Cultures of the African MRSA strains (ST88-IVa and ST8-V) showed heterogeneous oxacillin resistance in which the majority of cells exhibited low oxacillin MICs (a parts per thousand currency sign0.75 mg/L), but highly resistant subpopulations were also present with oxacillin MIC values up to several hundred mg/L and with frequencies of 10(-4) to 10(-6). The same strains after induction of the stringent stress response by mupirocin 'converted' the heterogeneous phenotypes into a more homogeneous and higher level resistance. After induction by oxacillin and mupirocin, each of the nine African OS-MRSA strains produced PBP2A-the protein product of mecA. Conclusions:The resistant phenotype of OS-MRSA resembles the phenotypes of historically early MRSA clones. The nature of genetic determinants responsible for the heterogeneous phenotypes of OS-MRSA remains to be determined.
Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J
Show All Authors

Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase

NATURE CHEMICAL BIOLOGY 2016 OCT; 12(10):838-844
The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium-and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.
Lu CC, Hsu YJ, Chang CJ, Lin CS, Martel J, Ojcius DM, Ko YF, Lai HC, Young JD
Show All Authors

Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity

INNATE IMMUNITY 2016 OCT; 22(7):522-533
Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain obscure. We show here that water and ethanol extracts of cultured mycelium from various species (Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mushrooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the preparation of medicinal mushrooms to prevent and treat human diseases.
de Avilla AI, Gallego I, Soria ME, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C
Show All Authors

Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir

PLOS ONE 2016 OCT 18; 11(10):? Article e0164691
A Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G -> A and C -> U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 mu M T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens.