Skip to main content

Publications search

Found 37173 matches. Displaying 4371-4380
Roosing S, Romani M, Isrie M, Rosti RO, Micalizzi A, Musaev D, Mazza T, Al-gazali L, Altunoglu U, Boltshauser E, D'Arrigo S, De Keersmaecker B, Kayserili H, Brandenberger S, Kraoua I, Mark PR, McKanna T, Van Keirsbilck J, Moerman P, Poretti A, Puri R, Van Esch H, Gleeson JG, Valente EM
Show All Authors

Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes

JOURNAL OF MEDICAL GENETICS 2016 SEP; 53(9):608-615
Background Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. Methods Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. Results We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. Conclusion Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype-phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies.
Dahan R, Ravetch JV
Show All Authors

Co-targeting of Adenosine Signaling Pathways for Immunotherapy: Potentiation by Fc Receptor Engagement

CANCER CELL 2016 SEP 12; 30(3):369-371
Targeting the signaling pathway of the immunosuppressive metabolite adenosine is an emerging approach for cancer immunotherapy. In this issue of Cancer Cell, Young et al. describe that co-inhibition of the adenosingenic pathway through blockade of both CD73 and A2AR enhances antitumor efficacy through distinct mechanisms.
Ganguly A, Manahan CC, Top D, Yee EF, Lin CF, Young MW, Thiel W, Crane BR
Show All Authors

Changes in active site histidine hydrogen bonding trigger cryptochrome activation

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 SEP 6; 113(36):10073-10078
Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.
Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter RH, Hupperich K, Hoffmann A, Mendoza-Ferreira N, Kaczmarek A, Janzen E, Milbradt J, Lamkemeyer T, Rigo F, Bennett CF, Guschlbauer C, Buschges A, Hammerschmidt M, Riessland M, Kye MJ, Clemen CS, Wirth B
Show All Authors

The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype

AMERICAN JOURNAL OF HUMAN GENETICS 2016 SEP 1; 99(3):647-665
Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only similar to 10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and-bundling protein, fully protects against SMA in SMN/-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression a situation resembling the human condition in asymptomatic SMN1-deleted individuals rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.
Belousov R, Cohen EGD, Rondoni L
Show All Authors

Langevin equation for systems with a preferred spatial direction

PHYSICAL REVIEW E 2016 SEP 22; 94(3):? Article 032127
In this paper, we generalize the theory of Brownian motion and the Onsager-Machlup theory of fluctuations for spatially symmetric systems to equilibrium and nonequilibrium steady-state systems with a preferred spatial direction, due to an external force. To do this, we extend the Langevin equation to include a bias, which is introduced by an external force and alters the Gaussian structure of the system's fluctuations. In addition, by solving this extended equation, we provide a physical interpretation for the statistical properties of the fluctuations in these systems. Connections of the extended Langevin equation with the theory of active Brownian motion are discussed as well.
Konishi A, Izumi T, Shimizu S
Show All Authors

TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends

JOURNAL OF BIOLOGICAL CHEMISTRY 2016 SEP 23; 291(39):20798-20810
Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends.
Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, Wu YG, Wang Q, Zhang L, Albertini DF
Show All Authors

Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos

REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY 2016 SEP 5; 14(?):? Article 54
Background: To preclude transfer of aneuploid embryos, current preimplantation genetic screening (PGS) usually involves one trophectoderm biopsy at blastocyst stage, assumed to represent embryo ploidy. Whether one such biopsy can correctly assess embryo ploidy has recently, however, been questioned. Methods: This descriptive study investigated accuracy of PGS in two ways. Part I: Two infertile couples donated 11 embryos, previously diagnosed as aneuploid and, therefore, destined to be discarded. They were dissected into 37 anonymized specimens, and sent to another national laboratory for repeat analyses to assess (i) inter-laboratory congruity and (ii) intra-embryo congruity of multiple embryo biopsies in a single laboratory. Part II: Reports on human IVF cycle outcomes after transfer of allegedly aneuploid embryos into 8 infertile patients. Results: Only 2/11 (18.2 %) embryos were identically assessed at two PGS laboratories; 4/11 (36.4 %), on repeat analysis were chromosomally normal, 2 mosaic normal/abnormal, and 5/11 (45.5 %) completely differed in reported aneuploidies. In intra-embryo analyses, 5/10 (50 %) differed between biopsy sites. Eight transfers of previously reported aneuploid embryos resulted in 5 chromosomally normal pregnancies, 4 delivered and 1 ongoing. Three patients did not conceive, though 1 among them experienced a chemical pregnancy. Conclusions: Though populations of both study parts are too small to draw statistically adequately powered conclusions on specific degrees of inaccuracy of PGS, here presented results do raise concerns especially about false-positive diagnoses. While inter-laboratory variations may at least partially be explained by different diagnostic platforms utilized, they cannot explain observed intra-embryo variations, suggesting more frequent trophectoderm mosiaicsm than previously reported. Together with recentl published mouse studies of lineages-specific degrees of survival of aneuploid cells in early stage embryos, these results call into question the biological basis of PGS, based on the assumption that a single trophectoderm biopsy can reliably determine embryo ploidy.
Lee H, Goodarzi H, Tavazoie SF, Alarcon CR
Show All Authors

TMEM2 Is a SOX4-Regulated Gene That Mediates Metastatic Migration and Invasion in Breast Cancer

CANCER RESEARCH 2016 SEP 1; 76(17):4994-5005
The developmental transcription factor SOX4 contributes to the metastatic spread of multiple solid cancer types, but its direct target genes that mediate cancer progression are not well defined. Using a systematic molecular and genomic approach, we identified the TMEM2 transmembrane protein gene as a direct transcriptional target of SOX4. TMEM2 was transcriptionally activated by SOX4 in breast cancer cells where, likeSOX4, TMEM2 was found to mediate proinvasive and promigratory effects. Similarly, TMEM2 was sufficient to promote metastatic colonization of breast cancer cells and its expression in primary breast tumors associated with a higher likelihood of metastatic relapse. Given earlier evidence that genetic inactivation of SOX4 or TMEM2 yield similar defects in cardiac development, our findings lead us to propose that TMEM2 may not only mediate the pathologic effects of SOX4 on cancer progression but also potentially its contributions to embryonic development. (C) 2016 AACR.
Kane M, Zang TM, Rihn SJ, Zhang FW, Kueck T, Alim M, Schoggins J, Rice CM, Wilson SJ, Bieniasz PD
Show All Authors

Identification of Interferon-Stimulated Genes with Antiretroviral Activity

CELL HOST & MICROBE 2016 SEP 14; 20(3):392-405
Interferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif56 (TRIM56) accentuates ISG induction by IFNa and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs.
Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P, Stanfield RL, McCoy LE, Ozorowski G, Hu XZ, Kalyuzhniy O, Briney B, Schiffner T, Garces F, Freund NT, Gitlin AD, Menis S, Georgeson E, Kubitz M, Adachi Y, Jones M, Mutafyan AA, Yun DS, Mayer CT, Ward AB, Burton DR, Wilson IA, Irvine DJ, Nussenzweig MC, Schief WR
Show All Authors

HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies

IMMUNITY 2016 SEP 20; 45(3):483-496
Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline- targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.