Skip to main content

Publications search

Found 37173 matches. Displaying 4391-4400
White RR, Vijg J
Show All Authors

Do DNA Double-Strand Breaks Drive Aging?

MOLECULAR CELL 2016 SEP 1; 63(5):729-738
DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death.
Ganguly A, Manahan CC, Top D, Yee EF, Lin CF, Young MW, Thiel W, Crane BR
Show All Authors

Changes in active site histidine hydrogen bonding trigger cryptochrome activation

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2016 SEP 6; 113(36):10073-10078
Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.
Bartsch TF, Kochanczyk MD, Lissek EN, Lange JR, Florin EL
Show All Authors

Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

NATURE COMMUNICATIONS 2016 SEP; 7(?):? Article 12729
Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of similar to 10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for.
Mobin MB, Gerstberger S, Teupser D, Campana B, Charisse K, Heim MH, Manoharan M, Tuschl T, Stoffel M
Show All Authors

The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation

NATURE COMMUNICATIONS 2016 SEP; 7(?):? Article 12848
The liver is essential for the synthesis of plasma proteins and integration of lipid metabolism. While the role of transcriptional networks in these processes is increasingly understood, less is known about post-transcriptional control of gene expression by RNA-binding proteins (RBPs). Here, we show that the RBP vigilin is upregulated in livers of obese mice and in patients with fatty liver disease. By using in vivo, biochemical and genomic approaches, we demonstrate that vigilin controls very-low-density lipoprotein (VLDL) secretion through the modulation of apolipoproteinB/Apob mRNA translation. Crosslinking studies reveal that vigilin binds to CU-rich regions in the mRNA coding sequence of Apob and other proatherogenic secreted proteins, including apolipoproteinC-III/Apoc3 and fibronectin/Fn1. Consequently, hepatic vigilin knockdown decreases VLDL/low-density lipoprotein (LDL) levels and formation of atherosclerotic plaques in Ldlr(-/-) mice. These studies uncover a role for vigilin as a key regulator of hepatic Apob translation and demonstrate the therapeutic potential of inhibiting vigilin for cardiovascular diseases.
Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D
Show All Authors

Generalized CNS arousal: An elementary force within the vertebrate nervous system (vol 68, pg 167, 2016)

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS 2016 SEP; 68(?):1021-1021
Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter RH, Hupperich K, Hoffmann A, Mendoza-Ferreira N, Kaczmarek A, Janzen E, Milbradt J, Lamkemeyer T, Rigo F, Bennett CF, Guschlbauer C, Buschges A, Hammerschmidt M, Riessland M, Kye MJ, Clemen CS, Wirth B
Show All Authors

The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype

AMERICAN JOURNAL OF HUMAN GENETICS 2016 SEP 1; 99(3):647-665
Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only similar to 10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and-bundling protein, fully protects against SMA in SMN/-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression a situation resembling the human condition in asymptomatic SMN1-deleted individuals rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.
Zaringhalam M, Papavasiliou FN
Show All Authors

Pseudouridylation meets next-generation sequencing

METHODS 2016 SEP 1; 107(?):63-72
The isomerization of uridine to pseudouridine (Psi), known as pseudouridylation, is the most abundant post-transcriptional modification of stable RNAs. Due to technical limitations in pseudouridine detection methods, studies on pseudouridylation have historically focused on ribosomal RNAs, transfer RNAs, and spliceosomal small nuclear RNAs, where Psi s play a critical role in RNA biogenesis and function. Recently, however, a series of deep sequencing methods-Pseudo-seq, Psi-seq, PSI-seq, and CeU-seq-has been published to map Psi positions across the entire transcriptome with single nucleotide resolution. These data have greatly expanded the catalogue of pseudouridylated transcripts, which include messenger RNAs and noncoding RNAs. Furthermore, these methods have revealed conditionally-dependent sites of pseudouridylation that appear in response to cellular stress, suggesting that pseudouridylation may play a role in dynamically modulating RNA function. Collectively, these methods have opened the door to further study of the biological relevance of naturally occurring Psi s. However, an in-depth comparison of these techniques and their results has not yet been undertaken despite all four methods relying on the same basic principle: Psi detection through selective chemical labeling by the carbodiimide known as CMC. In this article, we will outline the currently available high-throughput Psi-detection methods and present a comparative analysis of their results. We will then discuss the merits and limitations of these approaches, including those inherent in CMC conjugation, and their potential to further elucidate the function of this ubiquitous and dynamic modification. (C) 2016 Elsevier Inc. All rights reserved.
Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D
Show All Authors

Generalized CNS arousal: An elementary force within the vertebrate nervous system

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS 2016 SEP; 68(?):167-176
Why do animals and humans do anything at all? Arousal is the most powerful and essential function of the brain, a continuous function that accounts for the ability of animals and humans to respond to stimuli in the environment by producing muscular responses. Following decades of psychological, neurophysiological and molecular investigations, generalized CNS arousal can now be analyzed using approaches usually applied to physical systems. The concept of "criticality" is a state that illustrates an advantage for arousal systems poised near a phase transition. This property provides speed and sensitivity and facilitates the transition of the system into different brain states, especially as the brain crosses a phase transition from less aroused to more aroused states. In summary, concepts derived from applied mathematics of physical systems will now find their application in this area of neuroscience, the neurobiology of CNS arousal. (C) 2016 Elsevier Ltd. All rights reserved.
Scott EM, Halees A, Itan Y, Spencer EG, He Y, Azab MA, Gabriel SB, Belkadi A, Boisson B, Abel L, Clark AG, Alkurayal FS, Casanoval JL, Gleeson JG
Show All Authors

Characterization of Greater Middle Eastern genetic variation for enhanced disease gene iscovery

NATURE GENETICS 2016 SEP; 48(9):1071-1076
The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia(1-3), has resulted in an elevated burden of recessive disease(4). Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four-to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.
Collins D, Reed B, Zhang Y, Kreek MJ
Show All Authors

Sex differences in responsiveness to the prescription opioid oxycodone in mice

PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR 2016 SEP; 148(?):99-105
Over-prescription and increased nonmedical use of oxycodone has become a major concern. Despite its increased use, preclinical data concerning oxycodone's effects are still limited, especially in rodent models. To address this, we examined oxycodone's effects on place preference, locomotor activation, corticosterone levels, and thermal analgesia across a range of doses (between 03 and 10 mg/kg) in gonadally intact, adult male and female C57BL/6J mice. Males and females showed oxycodone-induced conditioned place preference and did not show significant between-sex differences in their place preference behavior. During both CPP conditioning sessions and open field assay, locomotor activity was increased by 1, 3, and 10 mg/kg oxycodone in females and by 3 and 10 mg/kg oxycodone in males. Plasma corticosterone levels were higher in females (compared to males) at baseline as well as following acute oxycodone injection and open field testing. The time course of oxycodone-induced analgesia was similar in males and females, however the total antinociceptive effect (AUC(0-120) min) was larger in males compared to females at the highest dose tested (10 mg/kg). Taken together, these data suggest that male and female mice are modestly different in their responses to oxycodone. (C) 2016 Elsevier Inc. All rights reserved.