Skip to main content

Publications search

Found 37173 matches. Displaying 4501-4510
Gleicher N, Kushnir VA, Albertini DF, Barad DH
Show All Authors

Improvements in IVF in women of advanced age

JOURNAL OF ENDOCRINOLOGY 2016 JUL; 230(1):F1-F6
Women above age 40 years in the US now represent the most rapidly growing age group having children. Patients undergoing in vitro fertilization (IVF) are rapidly aging in parallel. Especially where egg donations are legal, donation cycles, therefore, multiply more rapidly than autologous IVF cycles. The donor oocytes, however, are hardly ever a preferred patient choice. Since with use of own eggs, live birth rates decline with advancing age but remain stable (and higher) with donor eggs, older patients always face the difficult and very personal choice between poorer chances with own and better chances with donor oocytes. Physician contribution to this decision should in our opinion be restricted to accurate outcome information for both options. Achievable pregnancy and live birth rates in older women are, however, frequently underestimated, thereby mistakenly biasing fertility providers, private insurance companies and even regulatory government agencies. Restriction on access to IVF for older women is then often the consequence. In this review, we summarize the limited published data on best treatments of 'older' ovaries, while also addressing treatment approaches that should be avoided in older women. This focused review, therefore, to a degree is subjective. Research addressing aging ovaries in IVF has been disappointingly sparse, and has in our opinion too heavily concentrated on methods of embryo selection (ES), which, especially in older women, not only fail to improve IVF outcomes, but actually, negatively affect live birth chances. We conclude that, aside from breakthroughs in gamete creation, only pharmacological interventions into early (small growing follicle stages) follicle maturation will offer new potential to positively impact oocyte and embryo quality and, therefore, IVF outcomes. Research, therefore, should be accordingly redirected.
Li H, Kuwajima T, Oakley D, Nikulina E, Hou JW, Yang WS, Lowry ER, Lamas NJ, Amoroso MW, Croft GF, Hosur R, Wichterle H, Sebti S, Filbin MT, Stockwell B, Henderson CE
Show All Authors

Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth

CELL REPORTS 2016 JUL 12; 16(2):545-558
Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT) and geranylgeranyl transferase I (PGGT-1). Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS). Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early-versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.
Ezratty EJ, Pasolli HA, Fuchs E
Show All Authors

A Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation

JOURNAL OF CELL BIOLOGY 2016 JUL 4; 214(1):89-101
How primary cilia impact epidermal growth and differentiation during embryogenesis is poorly understood. Here, we show that during skin development, Notch signaling occurs within the ciliated, differentiating cells of the first few supra basal epidermal layers. Moreover, both Notch signaling and cilia disappear in the upper layers, where key ciliary proteins distribute to cell-cell borders. Extending this correlation, we find that Presenilin-2 localizes to basal bodies/cilia through a conserved VxPx motif. When this motif is mutated, a GFP-tagged Presenilin-2 still localizes to intercellular borders, but basal body localization is lost. Notably, in contrast to wild type, this mutant fails to rescue epidermal differentiation defects seen upon Psen 1 and 2 knockdown. Screening components implicated in ciliary targeting and polarized exocytosis, we provide evidence that the small GTPase ARM is required for Presenilin basal body localization, Notch signaling, and subsequent epidermal differentiation. Collectively, our findings raise the possibility that ARF4-dependent polarized exocytosis acts through the basal body ciliary complex to spatially regulate Notch signaling during epidermal differentiation.
Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M
Show All Authors

Three-Dimensional Study of Alzheimer's Disease Hallmarks Using the iDISCO Clearing Method

CELL REPORTS 2016 JUL 26; 16(4):1138-1152
Amyloidosis is a major problem in over one hundred diseases, including Alzheimer's disease (AD). Using the iDISCO visualization method involving targeted molecular labeling, tissue clearing, and light-sheet microscopy, we studied plaque formation in the intact AD mouse brain at up to 27 months of age. We visualized amyloid plaques in 3D together with tau, microglia, and vasculature. Volume imaging coupled to automated detection and mapping enables precise and fast quantification of plaques within the entire intact mouse brain. The present methodology is also applicable to analysis of frozen human brain samples without specialized preservation. Remarkably, amyloid plaques in human brain tissues showed greater 3D complexity and surprisingly large three-dimensional amyloid patterns, or TAPs. The ability to visualize amyloid in 3D, especially in the context of their micro-environment, and the discovery of large TAPs may have important scientific and medical implications.
McGarvey R, Dowling N, Cohen JE
Show All Authors

Longer Food Chains in Pelagic Ecosystems: Trophic Energetics of Animal Body Size and Metabolic Efficiency

AMERICAN NATURALIST 2016 JUL; 188(1):76-86
Factors constraining the structure of food webs can be investigated by comparing classes of ecosystems. We find that pelagic ecosystems, those based on one-celled primary producers, have longer food chains than terrestrial ecosystems. Yet pelagic ecosystems have lower primary productivity, contrary to the hypothesis that greater energy flows permit higher trophic levels. We hypothesize that longer food chain length in pelagic ecosystems, compared with terrestrial ecosystems, is associated with smaller pelagic animal body size permitting more rapid trophic energy transfer. Assuming negative allometric dependence of biomass production rate on body mass at each trophic level, the lowest three pelagic animal trophic levels are estimated to add biomass more rapidly than their terrestrial counterparts by factors of 12, 4.8, and 2.6. Pelagic animals consequently transport primary production to a fifth trophic level 50-190 times more rapidly than animals in terrestrial webs. This difference overcomes the approximately fivefold slower pelagic basal productivity, energetically explaining longer pelagic food chains. In addition, ectotherms, dominant at lower pelagic animal trophic levels, have high metabolic efficiency, also favoring higher rates of trophic energy transfer in pelagic ecosystems. These two animal trophic flow mechanisms imply longer pelagic food chains, reestablishing an important role for energetics in food web structure.
Kow LM, Pfaff DW
Show All Authors

Rapid estrogen actions on ion channels: A survey in search for mechanisms

STEROIDS 2016 JUL; 111(?):46-53
A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and SIX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key. (C) 2016 Elsevier Inc. All rights reserved.
Schaffelhofer S, Scherberger H
Show All Authors

Object vision to hand action in macaque parietal, premotor, and motor cortices

ELIFE 2016 JUL 26; 5(?):? Article e15278
Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping.
Thanos PK, Malave L, Delis F, Mangine P, Kane K, Grunseich A, Vitale M, Greengard P, Volkow ND
Show All Authors

Knockout of p11 Attenuates the Acquisition and Reinstatement of Cocaine Conditioned Place Preference in Male but not in Female Mice

SYNAPSE 2016 JUL; 70(7):293-301
Cocaine's enhancement of dopamine signaling is crucial for its rewarding effects but its serotonergic effects are also relevant. Here we examined the role of the protein p11, which recruits serotonin 5HT(1B) and 5HT(4) receptors to the cell surface, in cocaine reward. For this purpose we tested wild-type (WT) and p11 knockout (KO) male and female mice for cocaine conditioned place preference (CPP) and its cocaine-induced reinstatement at different abstinence times, after 8 days of extinction and 28 days of being home-caged. All mice showed significant cocaine CPP. Among males, p11KO showed lower CPP than WT; this difference was also evident after 28 days of home-cage abstinence. In contrast, in females there were no CPP differences between p11KO and WT mice at any time point tested. Cocaine priming after the 28-day home-cage abstinence period also resulted in lower cocaine conditioned motor activity in both male and female p11KO mice. These results suggest that cocaine CPP and its persistence during extinction and reinstatement are modulated in a sex-differentiated manner by p11. The lack of protein p11 confers protection from CPP on male, but not female mice, immediately after cocaine conditioning as well as after prolonged abstinence, but not after short-term withdrawal. (C) 2016 Wiley Periodicals, Inc.
Gulati N, Carvajal RD, Postow MA, Wolchok JD, Krueger JG
Show All Authors

Definite regression of cutaneous melanoma metastases upon addition of topical contact sensitizer diphencyprone to immune checkpoint inhibitor treatment

EXPERIMENTAL DERMATOLOGY 2016 JUL; 25(7):553-554
Mayer A, Schwiedrzik CM, Wibral M, Singer W, Melloni L
Show All Authors

Expecting to See a Letter: Alpha Oscillations as Carriers of Top-Down Sensory Predictions

CEREBRAL CORTEX 2016 JUL; 26(7):3146-3160
Predictions strongly influence perception. However, the neurophysiological processes that implement predictions remain underexplored. It has been proposed that high- and low-frequency neuronal oscillations act as carriers of sensory evidence and top-down predictions, respectively (von Stein and Sarnthein 2000; Bastos et al. 2012). However, evidence for the latter hypothesis remains scarce. In particular, it remains to be shown whether slow prestimulus alpha oscillations in task-relevant brain regions are stronger in the presence of predictions, whether they influence early categorization processes, and whether this interplay indeed boosts perception. Here, we directly address these questions by manipulating subjects' prior expectations about the identity of visually presented letters while collecting magnetoencephalographic recordings. We find that predictions lead to increased prestimulus alpha oscillations in a multisensory network representing grapheme/phoneme associations. Furthermore, alpha power interacts with stimulus degradation and top-down expectations to predict visibility ratings, and correlates with the amplitude of early sensory components (P1/N1m complex), suggesting a role in the selective amplification of predicted information. Our results thus indicate that low-frequency alpha oscillations can serve as a mechanism to carry and test sensory predictions about letters.