Skip to main content

Publications search

Found 37173 matches. Displaying 4791-4800
Olinares PDB, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT
Show All Authors

A Robust Workflow for Native Mass Spectrometric Analysis of Affinity-Isolated Endogenous Protein Assemblies

ANALYTICAL CHEMISTRY 2016 MAR 1; 88(5):2799-2807
The central players in most cellular events are assemblies of macromolecules. Structural and functional characterization of these assemblies requires knowledge of their subunit stoichiometry and intersubunit connectivity. One of the most direct means for acquiring such information is so-called "native mass spectrometry (MS)", wherein the masses of the intact assemblies and parts thereof are accurately determined. It is of particular interest to apply native MS to the study of endogenous protein assemblies i.e., those wherein the component proteins are expressed at endogenous levels in their natural functional states, rather than the overexpressed (sometimes partial) constructs commonly employed in classical structural studies, whose assembly can introduce stoichiometry artifacts and other unwanted effects. To date, the application of native MS to the elucidation of endogenous protein complexes has been limited by the difficulty in obtaining pristine cell-derived assemblies at sufficiently high concentrations for effective analysis. Here, to address this challenge, we present a robust workflow that couples rapid and efficient affinity isolation of endogenous protein complexes with a sensitive native MS readout. The resulting workflow has the potential to provide a wealth of data on the stoichiometry and intersubunit connectivity of endogenous protein assemblies information that is key to successful integrative structural elucidation of biological systems.
Minnich M, Tagoh H, Bonelt P, Axelsson E, Fischer M, Cebolla B, Tarakhovsky A, Nutt SL, Jaritz M, Busslinger M
Show All Authors

Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation

NATURE IMMUNOLOGY 2016 MAR; 17(3):331-343
The transcription factor Blimp-1 is necessary for the generation of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp-1 target genes. Blimp-1 promoted the migration and adhesion of plasmablasts. It directly repressed genes encoding several transcription factors and Aicda (which encodes the cytidine deaminase AID) and thus silenced B cell specific gene expression, antigen presentation and class-switch recombination in plasmablasts. It directly activated genes, which led to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp-1 induced the transcription of immunoglobulin genes by controlling the 3' enhancers of the loci encoding the immunoglobulin heavy chain (Igh) and K-light chain (lgk) and, furthermore, regulated the post-transcriptional expression switch from the membrane-bound form of the immunoglobulin heavy chain to its secreted form by activating EII2 (which encodes the transcription-elongation factor ELL2). Notably, Blimp-1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under the control of Blimp-1.
Scharf L, West AP, Sievers SA, Chen C, Jiang S, Gao H, Gray MD, McGuire AT, Scheid JF, Nussenzweig MC, Stamatatos L, Bjorkman PJ
Show All Authors

Structural basis for germline antibody recognition of HIV-1 immunogens

ELIFE 2016 MAR 21; 5(?):? Article e13783
Efforts to elicit broadly neutralizing antibodies (bNAbs) against HIV-1 require understanding germline bNAb recognition of HIV-1 envelope glycoprotein (Env). The VRC01-class bNAb family derived from the VH1-2(star)02 germline allele arose in multiple HIV-1 infected donors, yet targets the CD4-binding site on Env with common interactions. Modified forms of the 426c Env that activate germline-reverted B cell receptors are candidate immunogens for eliciting VRC01-class bNAbs. We present structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb-426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. Unlike typical antibody-antigen interactions, VRC01 -class germline antibodies exhibited preformed antigen-binding conformations for recognizing immunogens. Affinity maturation introduced substitutions increasing induced-fit recognition and electropositivity, potentially to accommodate negatively-charged complex-type N-glycans on gp120. These results provide general principles relevant to the unusual evolution of VRC01-class bNAbs and guidelines for structure-based immunogen design.
Garaulet DL, Sun KL, Li WH, Wen JY, Panzarino AM, O'Neil JL, Hiesinger PR, Young MW, Lai EC
Show All Authors

miR-124 Regulates Diverse Aspects of Rhythmic Behavior in Drosophila

JOURNAL OF NEUROSCIENCE 2016 MAR 23; 36(12):3414-3421
Circadian clocks enable organisms to anticipate and adapt to fluctuating environmental conditions. Despite substantial knowledge of central clock machineries, we have less understanding of how the central clock's behavioral outputs are regulated. Here, we identify Drosophila miR-124 as a critical regulator of diurnal activity. During normal light/dark cycles, mir-124 mutants exhibit profoundly abnormal locomotor activity profiles, including loss of anticipatory capacities at morning and evening transitions. Moreover, mir-124 mutants exhibited striking behavioral alterations in constant darkness (DD), including a temporal advance in peak activity. Nevertheless, anatomical and functional tests demonstrate a normal circadian pacemaker in mir-124 mutants, indicating this miRNA regulates clock output. Among the extensive miR-124 target network, heterozygosity for targets in the BMP pathway substantially corrected the evening activity phase shift in DD. Thus, excess BMP signaling drives specific circadian behavioral output defects in mir-124 knock-outs.
Abrahamsson S, Ilic R, Wisniewski J, Mehl B, Yu LY, Chen L, Davanco M, Oudjedi L, Fiche JB, Hajj B, Jin X, Pulupa J, Cho C, Mir M, El Beheiry M, Darzacq X, Nollmann M, Dahan M, Wu C, Lionnet T, Liddle JA, Bargmann CI
Show All Authors

Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

BIOMEDICAL OPTICS EXPRESS 2016 MAR 1; 7(3):855-869
Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is approximate to 90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. (C) 2016 Optical Society of America
Sliwa J, Plante A, Duhamel JR, Wirth S
Show All Authors

Independent Neuronal Representation of Facial and Vocal Identity in the Monkey Hippocampus and Inferotemporal Cortex

CEREBRAL CORTEX 2016 MAR; 26(3):950-966
Social interactions make up to a large extent the prime material of episodic memories. We therefore asked how social signals are coded by neurons in the hippocampus. Human hippocampus is home to neurons representing familiar individuals in an abstract and invariant manner ( Quian Quiroga et al. 2009). In contradistinction, activity of rat hippocampal cells is only weakly altered by the presence of other rats ( von Heimendahl et al. 2012; Zynyuk et al. 2012). We probed the activity of monkey hippocampal neurons to faces and voices of familiar and unfamiliar individuals (monkeys and humans). Thirty-one percent of neurons recorded without prescreening responded to faces or to voices. Yet responses to faces were more informative about individuals than responses to voices and neuronal responses to facial and vocal identities were not correlated, indicating that in our sample identity information was not conveyed in an invariant manner like in human neurons. Overall, responses displayed by monkey hippocampal neurons were similar to the ones of neurons recorded simultaneously in inferotemporal cortex, whose role in face perception is established. These results demonstrate that the monkey hippocampus participates in the read-out of social information contrary to the rat hippocampus, but possibly lack an explicit conceptual coding of as found in humans.
Harris LG, Murray S, Pascoe B, Bray J, Meric G, Magerios L, Wilkinson TS, Jeeves R, Rohde H, Schwarz S, de Lencastre H, Miragaia M, Rolo J, Bowden R, Jolley KA, Maiden MCJ, Mack D, Sheppard SK
Show All Authors

Biofilm Morphotypes and Population Structure among Staphylococcus epidermidis from Commensal and Clinical Samples

PLOS ONE 2016 MAR 15; 11(3):? Article e0151240
Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host's immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST) and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE) among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages.
Eule S, Metzger JJ
Show All Authors

Non-equilibrium steady states of stochastic processes with intermittent resetting

NEW JOURNAL OF PHYSICS 2016 MAR 2; 18(?):? Article 033006
Stochastic processes that are randomly reset to an initial condition serve as a showcase to investigate non-equilibrium steady states. However, all existing results have been restricted to the special case of memoryless resetting protocols. Here, we obtain the general solution for the distribution of processes in which waiting times between reset events are drawn from an arbitrary distribution. This allows for the investigation of a broader class of much more realistic processes. As an example, our results are applied to the analysis of the efficiency of constrained random search processes.
Morgand M, Bouvin-Pley M, Plantier JC, Moreau A, Alessandri E, Simon F, Pace CS, Pancera M, Ho DD, Poignard P, Bjorkman PJ, Mouquet H, Nussenzweig MC, Kwong PD, Baty D, Chames P, Braibant M, Barin F
Show All Authors

V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1

JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES 2016 MAR 1; 71(3):237-245
Background: Highly potent broadly neutralizing monoclonal antibodies (bNAbs) have been obtained from individuals infected by HIV-1 group M variants. We analyzed the cross-group neutralization potency of these bNAbs toward non-M primary isolates (PI). Material and Methods: The sensitivity to neutralization was analyzed in a neutralization assay using TZM-bl cells. Twenty-three bNAbs were used, including reagents targeting the CD4-binding site, the N160 glycan-V1/V2 site, the N332 glycan-V3 site, the membrane proximal external region of gp41, and complex epitopes spanning both env subunits. Two bispecific antibodies that combine the inhibitory activity of an anti-CD4 with that of PG9 or PG16 bNAbs were included in the study (PG9-iMab and PG16-iMab). Results: Cross-group neutralization was observed only with the bNAbs targeting the N160 glycan-V1/V2 site. Four group O PIs, 1 group N PI, and the group P PI were neutralized by PG9 and/or PG16 or PGT145 at low concentrations (0.04-9.39 mu g/mL). None of the non-M PIs was neutralized by the bNAbs targeting other regions at the highest concentration tested, except 10E8 that neutralized weakly 2 group N PIs and 35O22 that neutralized 1 group O PI. The bispecific bNAbs neutralized very efficiently all the non-M PIs with IC50 below 1 mu g/mL, except 2 group O strains. Conclusion: The N160 glycan-V1/V2 site is the most conserved neutralizing site within the 4 groups of HIV-1. This makes it an interesting target for the development of HIV vaccine immunogens. The corresponding bNAbs may be useful for immunotherapeutic strategies in patients infected by non-M variants.
Li L, Park E, Ling JJ, Ingram J, Ploegh H, Rapoport TA
Show All Authors

Crystal structure of a substrate-engaged SecY protein-translocation channel

NATURE 2016 MAR 17; 531(7594):395-399
Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61 alpha, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid(1-10). The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation(11). How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (similar to 10 angstrom) or are of insufficient quality(6-8). Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.