Skip to main content

Publications search

Found 37173 matches. Displaying 5181-5190
Miyoshi G, Young A, Petros T, Karayannis T, Chang MM, Lavado A, Iwano T, Nakajima M, Taniguchi H, Huang ZJ, Heintz N, Oliver G, Matsuzaki F, Machold RP, Fishell G
Show All Authors

Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

JOURNAL OF NEUROSCIENCE 2015 SEP 16; 35(37):12869-12889
Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties.
Alarcon CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF
Show All Authors

HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events

CELL 2015 SEP 10; 162(6):1299-1308
N-6-methyladenosine (m(6)A) is the most abundant internal modification of messenger RNA. While the presence of m(6)A on transcripts can impact nuclear RNA fates, a reader of this mark that mediates processing of nuclear transcripts has not been identified. We find that the RNA-binding protein HNRNPA2B1 binds m(6)A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m(6)A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and elicits similar alternative splicing effects as the m(6)A writer METTL3. Moreover, HNRNPA2B1 binds to m(6)A marks in a subset of primary miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing. Also, HNRNPA2B1 loss and METTL3 depletion cause similar processing defects for these pri-miRNA precursors. We propose HNRNPA2B1 to be a nuclear reader of the m(6)A mark and to mediate, in part, this mark's effects on primary microRNA processing and alternative splicing.
Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent nonmedical use. KOPr/dynorphin systems in the brain are known to be powerful countermodulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A.
Guan X, Song Y, Ott J, Zhang Y, Li C, Xin T, Li Z, Gan Y, Li J, Zhou S, Zhou Y
Show All Authors

The ADAMTS1 Gene Is Associated with Familial Mandibular Prognathism

JOURNAL OF DENTAL RESEARCH 2015 SEP; 94(9):1196-1201
Mandibular prognathism is a facial skeletal malocclusion. Until now, the genetic mechanism has been unclear. The goal of this study was to identify candidate genes or genomic regions directly associated with mandibular prognathism development, by employing whole genome sequencing. A large Chinese family was recruited, composed of 9 affected and 12 unaffected individuals, and the inheritance pattern of this family tends to be autosomal dominant. A single-nucleotide missense mutation in the ADAMTS1 gene (c. 742I>T) was found to segregate in the family, given that the affected individuals must be heterozygous for the mutation. For mutation validation, we screened this candidate mutation and 15 tag single-nucleotide polymorphisms in the coding sequence of ADAMTS1 among 230 unrelated cases and 196 unrelated controls using Sequenom Massarray and found that 3 in 230 cases carried this mutation and none of the controls did. Final results suggested that 2 single-nucleotide polymorphisms (rs2738, rs229038) of ADAMTS1 were significantly associated with mandibular prognathism.
Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V
Show All Authors

Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila

NEURON 2015 SEP 2; 87(5):1036-1049
Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila.
Bohk C, Rau R, Cohen JE
Show All Authors

Taylor's power law in human mortality

DEMOGRAPHIC RESEARCH 2015 SEP 17; 33(?):589-610 Article 21
BACKGROUND AND OBJECTIVE Taylor's law (TL) typically describes a linear relationship between the logarithm of the variance and the logarithm of the mean of population densities. It has been verified for many non-human species in ecology, and recently, for Norway's human population. In this article, we test TL for human mortality. METHOD We use death counts and exposures by single age (0 to 100) and calendar year (1960 to 2009) for countries of the Human Mortality Database to compute death rates as well as their rates of change in time. For both mortality measures, we test temporal forms of TL: In cross-age-scenarios, we analyze temporal variance to mean relationships at different ages in a certain country, and in cross-country-scenarios, we analyze temporal variance to mean relationships in different countries at a certain age. RESULTS The results reveal almost log-linear variance to mean relationships in both scenarios; exceptions are the cross-country-scenarios for the death rates, which appear to be clustered together, due to similar mortality levels among the countries. CONCLUSIONS TL appears to describe a regular pattern in human mortality. We suggest that it might be used (1) in mortality forecasting (to evaluate the quality of forecasts and to justify linear mortality assumptions) and (2) to reveal minimum mortality at some ages.
Feng B, Hou DF, Ren HC
Show All Authors

Magnetic and inverse magnetic catalysis in the Bose-Einstein condensation of neutral bound pairs

PHYSICAL REVIEW D 2015 SEP 15; 92(6):? Article 065011
The Bose-Einstein condensation of bound pairs made of oppositely charged fermions in a magnetic field is investigated. We find that the condensation temperature shows the magnetic catalysis effect in weak coupling and the inverse magnetic catalysis effect in strong coupling. The different responses to the magnetic field can be attributed to the competition between the dimensional reduction by Landau orbitals in pairing dynamics and the anisotropy of the kinetic spectrum of fluctuations (bound pairs in the normal phase).
Shimamoto Y, Forth S, Kapoor TM
Show All Authors

Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules

DEVELOPMENTAL CELL 2015 SEP 28; 34(6):669-681
The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like'' resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading'' simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs.
Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV
Show All Authors

Fc gamma Rs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis

CANCER CELL 2015 SEP 14; 28(3):285-295
Immune checkpoint blockade of the programmed cell death protein 1 (PD-1) pathway by monoclonal antibodies (Abs) has shown promising clinical benefit in the treatment of multiple cancer types. We elucidated the contribution of the fragment crystallizable (Fc) domains of anti-PD-1 and anti-PD-ligand 1 (L1) Abs for their optimal anti-tumor activity. We revealed that distinct Fey receptor (Fc gamma Rs) dependency and mechanisms account for the in vivo activity of anti-PD-1 versus anti-PD-L1 Abs. Anti-PD-1 Abs were found to be Fc gamma R independent in vivo; the presence of Fc gamma R-binding capacity compromises their anti-tumor activity. In contrast, the anti-PD-L1 Abs show augmented anti-tumor activity when activating Fc gamma R binding is introduced into the molecules, altering myeloid subsets within the tumor microenvironment.
Cohen LJ, Kang HS, Chu J, Huang YH, Gordon EA, Reddy BVB, Ternei MA, Craig JW, Brady SF
Show All Authors

Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 SEP 1; 112(35):E4825-E4834
The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-kappa B, a transcription factor known to play a central role in mediating responses to environmental stimuli. This screen led to the identification of 26 unique commensal bacteria effector genes (Cbegs) that are predicted to encode proteins with diverse catabolic, anabolic, and ligand-binding functions and most frequently interact with either glycans or lipids. Detailed analysis of one effector gene family (Cbeg12) recovered from all three patient libraries found that it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine (commendamide). This metabolite was also found in culture broth from the commensal bacterium Bacteroides vulgatus, which harbors a gene highly similar to Cbeg12. Commendamide resembles long-chain N-acyl-amides that function as mammalian signaling molecules through activation of G-protein-coupled receptors (GPCRs), which led us to the observation that commendamide activates the GPCR G2A/GPR132. G2A has been implicated in disease models of autoimmunity and atherosclerosis. This study shows the utility of functional metagenomics for identifying potential mechanisms used by commensal bacteria for host interactions and outlines a functional metagenomics-based pipeline for the systematic identification of diverse commensal bacteria effectors that impact host cellular functions.