Skip to main content

Publications search

Found 37173 matches. Displaying 5231-5240
Aaltonen T, Amerio S, Amidei D, Anastassov A, Annovi A, Antos J, Apollinari G, Appel JA, Arisawa T, Artikov A, Asaadi J, Ashmanskas W, Auerbach B, Aurisano A, Azfar F, Badgett W, Bae T, Barbaro-Galtieri A, Barnes VE, Barnett BA, Barria P, Bartos P, Bauce M, Bedeschi F, Behari S, Bellettini G, Bellinger J, Benjamin D, Beretvas A, Bhatti A, Bland KR, Blumenfeld B, Bocci A, Bodek A, Bortoletto D, Boudreau J, Boveia A, Brigliadori L, Bromberg C, Brucken E, Budagov J, Budd HS, Burkett K, Busetto G, Bussey P, Butti P, Buzatu A, Calamba A, Camarda S, Campanelli M, Canelli F, Carls B, Carlsmith D, Carosi R, Carrillo S, Casal B, Casarsa M, Castro A, Catastini P, Cauz D, Cavaliere V, Cerri A, Cerrito L, Chen YC, Chertok M, Chiarelli G, Chlachidze G, Cho K, Chokheli D, Clark A, Clarke C, Convery ME, Conway J, Corbo M, Cordelli M, Cox CA, Cox DJ, Cremonesi M, Cruz D, Cuevas J, Culbertson R, Dascenzo N, Datta M, de Barbaro P, Demortier L, Deninno M, DErrico M, Devoto F, Di Canto A, Di Ruzza B, Dittmann JR, Donati S, DOnofrio M, Dorigo M, Driutti A, Ebina K, Edgar R, Elagin A, Erbacher R, Errede S, Esham B, Farrington S, Ramos JPF, Field R, Flanagan G, Forrest R, Franklin M, Freeman JC, Frisch H, Funakoshi Y, Galloni C, Garfinkel AF, Garosi P, Gerberich H, Gerchtein E, Giagu S, Giakoumopoulou V, Gibson K, Ginsburg CM, Giokaris N, Giromini P, Glagolev V, Glenzinski D, Gold M, Goldin D, Golossanov A, Gomez G, Gomez-Ceballos G, Goncharov M, Lopez OG, Gorelov I, Goshaw AT, Goulianos K, Gramellini E, Grosso-Pilcher C, Group RC, da Costa JG, Hahn SR, Han JY, Happacher F, Hara K, Hare M, Harr RF, Harrington-Taber T, Hatakeyama K, Hays C, Heinrich J, Herndon M, Hocker A, Hong Z, Hopkins W, Hou S, Hughes RE, Husemann U, Hussein M, Huston J, Introzzi G, Iori M, Ivanov A, James E, Jang D, Jayatilaka B, Jeon EJ, Jindariani S, Jones M, Joo KK, Jun SY, Junk TR, Kambeitz M, Kamon T, Karchin PE, Kasmi A, Kato Y, Ketchum N, Keung J, Kilminster B, Kim DH, Kim HS, Kim JE, Kim MJ, Kim SH, Kim SB, Kim YJ, Kim YK, Kimura N, Kirby M, Knoepfel K, Kondo K, Kong DJ, Konigsberg J, Kotwal AV, Kreps M, Kroll J, Kruse M, Kuhr T, Kurata M, Laasanen AT, Lammel S, Lancaster M, Lannon K, Latino G, Lee HS, Lee JS, Leo S, Leone S, Lewis JD, Limosani A, Lipeles E, Lister A, Liu H, Liu Q, Liu T, Lockwitz S, Loginov A, Lucchesi D, Luca A, Lueck J, Lujan P, Lukens P, Lungu G, Lys J, Lysak R, Madrak R, Maestro P, Malik S, Manca G, Manousakis-Katsikakis A, Marchese L, Margaroli F, Marino P, Matera K, Mattson ME, Mazzacane A, Mazzanti P, McNulty R, Mehta A, Mehtala P, Mesropian C, Miao T, Mietlicki D, Mitra A, Miyake H, Moed S, Moggi N, Moon CS, Moore R, Morello MJ, Mukherjee A, Muller T, Murat P, Mussini M, Nachtman J, Nagai Y, Naganoma J, Nakano I, Napier A, Nett J, Neu C, Nigmanov T, Nodulman L, Noh SY, Norniella O, Oakes L, Oh SH, Oh YD, Oksuzian I, Okusawa T, Orava R, Ortolan L, Pagliarone C, Palencia E, Palni P, Papadimitriou V, Parker W, Pauletta G, Paulini M, Paus C, Phillips TJ, Piacentino G, Pianori E, Pilot J, Pitts K, Plager C, Pondrom L, Poprocki S, Potamianos K, Pranko A, Prokoshin F, Ptohos F, Punzi G, Redondo Fernandez I, Renton P, Rescigno M, Rimondi F, Ristori L, Robson A, Rodriguez T, Rolli S, Ronzani M, Roser R, Rosner JL, Ruffini F, Ruiz A, Russ J, Rusu V, Sakumoto WK, Sakurai Y, Santi L, Sato K, Saveliev V, Savoy-Navarro A, Schlabach P, Schmidt EE, Schwarz T, Scodellaro L, Scuri F, Seidel S, Seiya Y, Semenov A, Sforza F, Shalhout SZ, Shears T, Shepard PF, Shimojima M, Shochet M, Shreyber-Tecker I, Simonenko A, Sliwa K, Smith JR, Snider FD, Song H, Sorin V, Denis RS, Stancari M, Stentz D, Strologas J, Sudo Y, Sukhanov A, Suslov I, Takemasa K, Takeuchi Y, Tang J, Tecchio M, Teng PK, Thom J, Thomson E, Thukral V, Toback D, Tokar S, Tollefson K, Tomura T, Tonelli D, Torre S, Torretta D, Totaro P, Trovato M, Ukegawa F, Uozumi S, Vazquez F, Velev G, Vellidis C, Vernieri C, Vidal M, Vilar R, Vizan J, Vogel M, Volpi G, Wagner P, Wallny R, Wang SM, Waters D, Wester WC, Whiteson D, Wicklund AB, Wilbur S, Williams HH, Wilson JS, Wilson P, Winer BL, Wittich P, Wolbers S, Wolfe H, Wright T, Wu X, Wu Z, Yamamoto K, Yamato D, Yang T, Yang UK, Yang YC, Yao WM, Yeh GP, Yi K, Yoh J, Yorita K, Yoshida T, Yu GB, Yu I, Zanetti AM, Zeng Y, Zhou C, Zucchelli S
Show All Authors

Measurement of the production and differential cross sections of W+W- bosons in association with jets in p(p)over-bar collisions at root s = 1.96 TeV (vol 91, 111101, 2015)

PHYSICAL REVIEW D 2015 AUG 10; 92(3):? Article 039901
Yu N, Niu QW, Ng KH, Chua NH
Show All Authors

The role of miR156/SPLs modules in Arabidopsis lateral root development

PLANT JOURNAL 2015 AUG; 83(4):673-685
miR156 is an evolutionarily highly conserved miRNA in plants that defines an age-dependent flowering pathway. The investigations thus far have largely, if not exclusively, confined to plant aerial organs. Root branching architecture is a major determinant of water and nutrients uptake for plants. We show here that MIR156 genes are differentially expressed in specific cells/tissues of lateral roots. Plants overexpressing miR156 produce more lateral roots whereas reducing miR156 levels leads to fewer lateral roots. We demonstrate that at least one representative from the three groups of miR156 targets SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes: SPL3, SPL9 and SPL10 are involved in the repression of lateral root growth, with SPL10 playing a dominant role. In addition, both MIR156 and SPLs are responsive to auxin signaling suggesting that miR156/SPL modules might be involved in the proper timing of the lateral root developmental progression. Collectively, these results unravel a role for miR156/SPLs modules in lateral root development in Arabidopsis. Significance Statement Previous to our work, miR156/SPL modules have been characterized only with respect to their function in leaf development and plant phase transition. Our work which shows that these modules are involved in lateral root growth as well will stimulate others to investigate putative functions of these modules in other root-related developmental events.
Meltzer B, Reichenbach CS, Braiman C, Schiff ND, Hudspeth AJ, Reichenbach T
Show All Authors

The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

FRONTIERS IN HUMAN NEUROSCIENCE 2015 AUG 6; 9(?):? Article 436
The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces.
Saeed M, Andreo U, Chung HY, Espiritu C, Branch AD, Silva JM, Rice CM
Show All Authors

SEC14L2 enables pan-genotype HCV replication in cell culture

NATURE 2015 AUG 27; 524(7566):471-475
Since its discovery in 1989, efforts to grow clinical isolates of the hepatitis C virus (HCV) in cell culture have met with limited success. Only the JFH-1 isolate has the capacity to replicate efficiently in cultured hepatoma cells without cell culture-adaptive mutations(1-3). We hypothesized that cultured cells lack one or more factors required for the replication of clinical isolates. To identify the missing factors, we transduced Huh-7.5 human hepatoma cells with a pooled lentivirus-based human complementary DNA (cDNA) library, transfected the cells with HCV subgenomic replicons lacking adaptive mutations, and selected for stable replicon colonies. This led to the identification of a single cDNA, SEC14L2, that enabled RNA replication of diverse HCV genotypes in several hepatoma cell lines. This effect was dose-dependent, and required the continuous presence of SEC14L2. Full-length HCV genomes also replicated and produced low levels of infectious virus. Remarkably, SEC14L2-expressing Huh-7.5 cells also supported HCV replication following inoculation with patient sera. Mechanistic studies suggest that SEC14L2 promotes HCV infection by enhancing vitamin E-mediated protection against lipid peroxidation. This provides a foundation for development of in vitro replication systems for all HCV isolates, creating a useful platform to dissect the mechanisms by which cell culture-adaptive mutations act.
Deng SL, Chua NH
Show All Authors

Inverted-Repeat RNAs Targeting FT Intronic Regions Promote FT Expression in Arabidopsis

PLANT AND CELL PHYSIOLOGY 2015 AUG; 56(8):1667-1678
Transcriptional gene silencing (TGS) is often associated with promoter methylation in both animals and plants. However, the function of DNA methylation in the intragenic region remains unclear. Here, we confirmed that promoter methylation of FLOWERING LOCUS T (FT) led to gene silencing; in contrast, we found that intragenic methylation triggered by RNA-directed DNA methylation (RdDM) promoted FT expression. DNA methylation of the FT gene body blocked FLC repressor binding to the CArG boxes. However, when the boxes were not directly targeted by inverted-repeat RNAs (IRs), FLC binding blocked spreading of DNA methylation to theses sequences. Notwithstanding the FLC binding, FT was still activated under this condition. The DNA methylation was accompanied by elevated H3K9 methylation levels on the FT gene body. More importantly, the FT diurnal and organ-specific expression pattern was preserved in the activated plants. Our data demonstrate that the same type of epigenetic modification can lead to an opposite genetic outcome depending on the location of the modification on the gene locus. Moreover, we highlight a novel strategy to activate gene expression without changing its spatio-temporal regulatory patterns.
Kim S, Lee K, Choi JH, Ringstad N, Dynlacht BD
Show All Authors

Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle

NATURE COMMUNICATIONS 2015 AUG; 6(?):? Article 8087
Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization.
Wang H, Warner-Schmidt J, Varela S, Enikolopov G, Greengard P, Flajolet M
Show All Authors

Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 AUG 4; 112(31):9745-9750
Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.
Deglincerti A, Haremaki T, Warmflash A, Sorre B, Brivanlou AH
Show All Authors

Coco is a dual activity modulator of TGF beta signaling

DEVELOPMENT 2015 AUG 1; 142(15):2678-U272
The TGF beta signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGF beta ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGF beta 1 signaling. Coco synergizes with TGF beta 1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGF beta 1 and enhances TGF beta 1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGF beta signaling.
Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan SP, Treuting PM, Rudensky AY
Show All Authors

A Distinct Function of Regulatory T Cells in Tissue Protection

CELL 2015 AUG 27; 162(5):1078-1089
Regulatory T (Treg) cells suppress immune responses to a broad range of non-microbial and microbial antigens and indirectly limit immune inflammation-inflicted tissue damage by employing multiple mechanisms of suppression. Here, we demonstrate that selective Treg cell deficiency in amphiregulin leads to severe acute lung damage and decreased blood oxygen concentration during influenza virus infection without any measureable alterations in Treg cell suppressor function, antiviral immune responses, or viral load. This tissue repair modality is mobilized in Treg cells in response to inflammatory mediator IL-18 or alarmin IL-33, but not by TCR signaling that is required for suppressor function. These results suggest that, during infectious lung injury, Treg cells have a major direct and non-redundant role in tissue repair and maintenance-distinct from their role in suppression of immune responses and inflammation-and that these two essential Treg cell functions are invoked by separable cues.
Wheway G, Schmidts M, Mans DA, Szymanska K, Nguyen TMT, Racher H, Phelps IG, Toedts G, Kennedy J, Wunderlich KA, Sorusch N, Abdelhamed ZA, Natarajan S, Herridge W, van Reeuwijk J, Horn N, Boldt K, Parry DA, Letteboer SJF, Roosing S, Adams M, Bell SM, Bond J, Higgins J, Morrison EE, Tomlinson DC, Slaats GG, van Dam TJP, Huang LJ, Kessler K, Giessl A, Logan CV, Boyle EA, Shendure J, Anazi S, Aldahmesh M, Al Hazzaa S, Hegele RA, Ober C, Frosk P, Mhanni AA, Chodirker BN, Chudley AE, Lamont R, Bernier FP, Beaulieu CL, Gordon P, Pon RT, Donahue C, Barkovich AJ, Wolf L, Toomes C, Thiel CT, Boycott KM, McKibbin M, Inglehearn CF, Stewart F, Omran H, Huynen MA, Sergouniotis PI, Alkuraya FS, Parboosingh JS, Innes AM, Willoughby CE, Giles RH, Webster AR, Ueffing M, Blacque O, Gleeson JG, Wolfrum U, Beales PL, Gibson T, Doherty D, Mitchison HM, Roepman R, Johnson CA
Show All Authors

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

NATURE CELL BIOLOGY 2015 AUG; 17(8):1074-U483
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.