Skip to main content

Publications search

Found 37387 matches. Displaying 5381-5390
Vasilyev N, Polonskaia A, Darnell JC, Darnell RB, Patel DJ, Serganov A
Show All Authors

Crystal structure reveals specific recognition of a G-quadruplex RNA by a beta-turn in the RGG motif of FMRP (opens in new window)

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 SEP 29; 112(39):E5391-E5400
Show Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-angstrom crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K+-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-p interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I beta-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Antolin-Fontes B, Ables JL, Gorlich A, Ibanez-Tallon I
Show All Authors

The habenulo-interpeduncular pathway in nicotine aversion and withdrawal (opens in new window)

NEUROPHARMACOLOGY 2015 SEP; 96(?):213-222
Show Abstract
Progress has been made over the last decade in our understanding of the brain areas and circuits involved in nicotine reward and withdrawal, leading to models of addiction that assign different addictive behaviors to distinct, yet overlapping, neural circuits (Koob and Volkow, 2010; Lobo and Nestler, 2011; Tuesta et al., 2011; Volkow et al., 2011). Recently the habenulo-interpeduncular (Hb-IPN) midbrain pathway has re-emerged as a new critical crossroad that influences the brain response to nicotine. This brain area is particularly enriched in nicotinic acetylcholine receptor (nAChR) subunits alpha 5, alpha 3 and beta 4 encoded by the CHRNA5-A3-B4 gene cluster, which has been associated with vulnerability to tobacco dependence in human genetics studies. This finding, together with studies in mice involving deletion and replacement of nAChR subunits, and investigations of the circuitry, cell types and electrophysiological properties, have begun to identify the molecular mechanisms that take place in the MHb-IPN which underlie critical aspects of nicotine dependence. In the current review we describe the anatomical and functional connections of the MHb-IPN system, as well as the contribution of specific nAChRs subtypes in nicotine-mediated behaviors. Finally, we discuss the specific electrophysiological properties of MHb-IPN neuronal populations and how nicotine exposure alters their cellular physiology, highlighting the unique role of the MHb-IPN in the context of nicotine aversion and withdrawal. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. (C) 2014 Elsevier Ltd. All rights reserved.
Hauptmann J, Schraivogel D, Bruckmann A, Manickavel S, Jakob L, Eichner N, Pfaff J, Urban M, Sprunck S, Hafner M, Tuschl T, Deutzmann R, Meister G
Show All Authors

Biochemical isolation of Argonaute protein complexes by Ago-APP (opens in new window)

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2015 SEP 22; 112(38):11841-11845
Show Abstract
During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as "Ago protein Affinity Purification by Peptides" (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells.
Nectow AR, Ekstrand MI, Friedman JM
Show All Authors

Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP (opens in new window)

NATURE PROTOCOLS 2015 SEP; 10(9):1319-1327
Show Abstract
Retro-TRAP (translating ribosome affinity purification) technology enables the synthesis of molecular and neuroanatomical information through the use of transgenic and viral approaches. In contrast to other methods that are used to profile neural circuits such as laser-capture microdissection and FACS, Retro-TRAP is a high-throughput methodology that requires minimal specialized instrumentation. Retro-TRAP uses an anti-GFP ribosomal tag (expressed virally or using transgenesis) to immunoprecipitate translating mRNAs from any population of neurons that express GFP. The protocol detailed here describes the rapid extraction of molecular information from neural circuits in mice using retrograde-tracing GFP-expressing viruses. This approach can be used to identify novel cell types, as well as to molecularly profile cell types for which Cre-driver lines are available, in defined presynaptic loci. The current protocol describes a method for extracting translating mRNA from any neural circuit accessible by stereotaxic injection and manual dissection, and it takes 2-4 weeks. Although it is not described here, this mRNA can then be used in downstream processing applications such as quantitative PCR (qPCR) and high-throughput RNA sequencing to obtain 'molecular connectomic' information.
Alarcon CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF
Show All Authors

HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events (opens in new window)

CELL 2015 SEP 10; 162(6):1299-1308
Show Abstract
N-6-methyladenosine (m(6)A) is the most abundant internal modification of messenger RNA. While the presence of m(6)A on transcripts can impact nuclear RNA fates, a reader of this mark that mediates processing of nuclear transcripts has not been identified. We find that the RNA-binding protein HNRNPA2B1 binds m(6)A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m(6)A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and elicits similar alternative splicing effects as the m(6)A writer METTL3. Moreover, HNRNPA2B1 binds to m(6)A marks in a subset of primary miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing. Also, HNRNPA2B1 loss and METTL3 depletion cause similar processing defects for these pri-miRNA precursors. We propose HNRNPA2B1 to be a nuclear reader of the m(6)A mark and to mediate, in part, this mark's effects on primary microRNA processing and alternative splicing.
Li Y, Cagirici HB, Horpaopan S, Ott J, Imai A, Majewski J, Lathrop M
Show All Authors

Leveling the Playing Field in Homozygosity Mapping Using Map Distances (opens in new window)

ANNALS OF HUMAN GENETICS 2015 SEP; 79(5):366-372
Show Abstract
Studies of linkage disequilibrium (LD) and its variation in the genome are of central importance for understanding evolutionary history, population structure, and selective sweeps. Extreme forms of the latter may result in runs of homozygosity (ROH). In human gene mapping, long ROHs are the basis for homozygosity mapping (HM) with length measured in terms of Mb (10(6) base pairs physical distance). LD varies greatly over the human genome so that long ROHs tend to occur preferentially in regions of high LD and ROHs of the same length in different regions are not strictly comparable. Thus, in human gene mapping, LD appears as a confounder that needs to be taken into account in the interpretation of ROHs. The effect of varying LD can be mitigated by working on a scale of centimorgans (cM, genetic distance) instead of Mb. We demonstrate this effect for HapMap 3 data on chromosome 19 and show examples with different ROH lengths depending on whether physical or genetic lengths are used. These results suggest that HM should preferably be done on genetic rather than physical distances.
Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV
Show All Authors

Fc gamma Rs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis (opens in new window)

CANCER CELL 2015 SEP 14; 28(3):285-295
Show Abstract
Immune checkpoint blockade of the programmed cell death protein 1 (PD-1) pathway by monoclonal antibodies (Abs) has shown promising clinical benefit in the treatment of multiple cancer types. We elucidated the contribution of the fragment crystallizable (Fc) domains of anti-PD-1 and anti-PD-ligand 1 (L1) Abs for their optimal anti-tumor activity. We revealed that distinct Fey receptor (Fc gamma Rs) dependency and mechanisms account for the in vivo activity of anti-PD-1 versus anti-PD-L1 Abs. Anti-PD-1 Abs were found to be Fc gamma R independent in vivo; the presence of Fc gamma R-binding capacity compromises their anti-tumor activity. In contrast, the anti-PD-L1 Abs show augmented anti-tumor activity when activating Fc gamma R binding is introduced into the molecules, altering myeloid subsets within the tumor microenvironment.
Breton G, Lee J, Liu K, Nussenzweig MC
Show All Authors

Defining human dendritic cell progenitors by multiparametric flow cytometry (opens in new window)

NATURE PROTOCOLS 2015 SEP; 10(9):1407-1422
Show Abstract
Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings.
Lee H, Ruane D, Law K, Ho Y, Garg A, Rahman A, Esterhazy D, Cheong C, Goljo E, Sikora AG, Mucida D, Chen BK, Govindraj S, Breton G, Mehandru S
Show All Authors

Phenotype and function of nasal dendritic cells (opens in new window)

MUCOSAL IMMUNOLOGY 2015 SEP; 8(5):1083-1098
Show Abstract
Intranasal (i.n.) vaccination generates immunity across local, regional, and distant sites. However, nasal dendritic cells (DCs), pivotal for the induction of i.n. vaccine-induced immune responses, have not been studied in detail. Here, by using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of "classical" DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were Fms-related tyrosine 3 kinase ligand responsive and displayed unique phenotypic and functional characteristics, including the ability to present antigen, induce an allogeneic T-cell response, and migrate in response to lipopolysaccharide or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1(+) DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1(+) and BDCA-3(hi) DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic, and functional properties of nasal DCs, and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis.
Fiscella K, Tobin JN, Carroll JK, He H, Ogedegbe G
Show All Authors

Ethical oversight in quality improvement and quality improvement research: new approaches to promote a learning health care system (opens in new window)

BMC MEDICAL ETHICS 2015 SEP 17; 16(?):? Article 63
Show Abstract
Background: Institutional review boards (IRBs) distinguish health care quality improvement (QI) and health care quality improvement research (QIR) based primarily on the rigor of the methods used and the purported generalizability of the knowledge gained. Neither of these criteria holds up upon scrutiny. Rather, this apparently false dichotomy may foster under-protection of participants in QI projects and over-protection of participants within QIR. Discussion: Minimal risk projects should entail minimal oversight including waivers for informed consent for both QI and QIR projects. Minimizing the burdens of conducting QIR, while ensuring minimal safeguards for QI projects, is needed to restore this imbalance in oversight. Potentially, such ethical oversight could be provided by the integration of Institutional Review Boards and Clinical Ethical Committees, using a more integrated and streamlined approach such as a two-step process involving a screening review, followed by a review by committee trained in QIR. Standards for such ethical review and training in these standards, coupled with rapid review cycles, could facilitate an appropriate level of oversight within the context of creating and sustaining learning health care systems. Summary: We argue that QI and QIR are not reliably distinguishable. We advocate for approaches that improve protections for QI participants while minimizing over-protection for participants in QIR through reasonable ethical oversight that aligns risk to participants in both QI and QIR with the needs of a learning health care system.