Skip to main content

Publications search

Found 37048 matches. Displaying 621-630
Doane AS, Chu CS, Di Giammartino DC, Rivas MA, Hellmuth JC, Jiang YW, Yusufova N, Alonso A, Roeder RG, Apostolou E, Melnick AM, Elemento O
Show All Authors

OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity

NATURE IMMUNOLOGY 2021 OCT; 22(10):1327-+
During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCin GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions. Elemento, Melnick and colleagues examine the chromatin and transcriptional changes that occur during differentiation of human primary B cells into antibody-secreting cells. In naive B cells, the transcription factor OCT2 is preloaded at high-affinity super-enhancer sites present in repressed 'silent' chromatin; upon activation, OCis recruited to these regions, where it facilitates arrays of OCT2 binding to lower-affinity octamer motifs, leading to active formation of germinal center B cell-specific super-enhancers.
Dutta E, DeJesus MA, Ruecker N, Zaveri A, Koh EI, Sassetti CM, Schnappinger D, Ioerger TR
Show All Authors

An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence

PLOS ONE 2021 OCT 1; 16(10):? Article e0257911
Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.
Su HC, Casanova JL
Show All Authors

Editorial overview: Human inborn errors of immunity to infection

CURRENT OPINION IN IMMUNOLOGY 2021 OCT; 72(?):3-5
Baez-Mendoza R, Vazquez Y, Mastrobattista EP, Williams ZM
Show All Authors

Neuronal Circuits for Social Decision-Making and Their Clinical Implications

FRONTIERS IN NEUROSCIENCE 2021 OCT 1; 15(?):? Article 720294
Social living facilitates individual access to rewards, cognitive resources, and objects that would not be otherwise accessible. There are, however, some drawbacks to social living, particularly when competing for scarce resources. Furthermore, variability in our ability to make social decisions can be associated with neuropsychiatric disorders. The neuronal mechanisms underlying social decision-making are beginning to be understood. The momentum to study this phenomenon has been partially carried over by the study of economic decision-making. Yet, because of the similarities between these different types of decision-making, it is unclear what is a social decision. Here, we propose a definition of social decision-making as choices taken in a context where one or more conspecifics are involved in the decision or the consequences of it. Social decisions can be conceptualized as complex economic decisions since they are based on the subjective preferences between different goods. During social decisions, individuals choose based on their internal value estimate of the different alternatives. These are complex decisions given that conspecifics beliefs or actions could modify the subject's internal valuations at every choice. Here, we first review recent developments in our collective understanding of the neuronal mechanisms and circuits of social decision-making in primates. We then review literature characterizing populations with neuropsychiatric disorders showing deficits in social decision-making and the underlying neuronal circuitries associated with these deficits.

Rheinemann L, Downhour DM, Bredbenner K, Mercenne G, Davenport KA, Schmitt PT, Necessary CR, McCullough J, Schmitt AP, Simon SM, Sundquist WI, Elde NC
Show All Authors

RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis

CELL 2021 OCT 14; 184(21):5419-+
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe dupli cated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The re purposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Lopez J, Mommert M, Mouton W, Pizzorno A, Brengel-Pesce K, Mezidi M, Villard M, Lina B, Richard JC, Fassier JB, Cheynet V, Padey B, Duliere V, Julien T, Paul S, Bastard P, Belot A, Bal A, Casanova JL, Rosa-Calatrava M, Morfin F, Walzer T, Trouillet-Assant S
Show All Authors

Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs

JOURNAL OF EXPERIMENTAL MEDICINE 2021 OCT 4; 218(10):? Article e20211211
IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-a(2) levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.
Watson KT, Simard JF, Henderson VW, Nutkiewicz L, Lamers F, Nasca C, Rasgon N, Penninx BWJH
Show All Authors

Incident Major Depressive Disorder Predicted by Three Measures of Insulin Resistance: A Dutch Cohort Study

AMERICAN JOURNAL OF PSYCHIATRY 2021 OCT; 178(10):914-920
Objective: Major depressive disorder is the leading cause of disability worldwide. Yet, there remain significant challenges in predicting new cases of major depression and devising strategies to prevent the disorder. An important first step in this process is identifying risk factors for the incidence of major depression. There is accumulating biological evidence linking insulin resistance, another highly prevalent condition, and depressive disorders. The objectives of this study were to examine whether three surrogate measures of insulin resistance (high triglyceride-HDL [high-density lipoprotein] ratio; prediabetes, as indicated by fasting plasma glucose level; and high central adiposity, as measured by waist circumference) at the time of study enrollment were associated with an increased rate of incident major depressive disorder over a 9-year follow-up period and to assess whether the new onset of these surrogate measures during the first 2 years after study enrollment was predictive of incident major depressive disorder during the subsequent follow-up period. Methods: The Netherlands Study of Depression and Anxiety (NESDA) is a multisite longitudinal study of the course and consequences of depressive and anxiety disorders in adults. The study population comprised 601 NESDA participants (18-65 years old) without a lifetime history of depression or anxiety disorders. The study's outcome was incident major depressive disorder, defined using DSM-IV criteria. Exposure measures included triglyceride-HDL ratio, fasting plasma glucose level, and waist circumference. Results: Fourteen percent of the sample developed major depressive disorder during follow-up. Cox proportional hazards models indicated that higher triglyceride-HDL ratio was positively associated with an increased risk for incident major depression (hazard ratio=1.89, 95% CI=1.15, 3.11), as were higher fasting plasma glucose levels (hazard ratio=1.37, 95% CI=1.05, 1.77) and higher waist circumference (hazard ratio=1.11 95% CI=1.01, 1.21). The development of prediabetes in the 2-year period after study enrollment was positively associated with incident major depressive disorder (hazard ratio=2.66, 95% CI=1.13, 6.27). The development of high triglyceride-HDL ratio and high central adiposity (cut-point >= 100 cm) in the same period was not associated with incident major depression. Conclusions: Three surrogate measures of insulin resistance positively predicted incident major depressive disorder in a 9-year follow-up period among adults with no history of depression or anxiety disorder. In addition, the development of prediabetes between enrollment and the 2-year study visit was positively associated with incident major depressive disorder. These findings may have utility for evaluating the risk for the development of major depression among patients with insulin resistance or metabolic pathology.
Parker J, Kronauer DJC
Show All Authors

How ants shape biodiversity

CURRENT BIOLOGY 2021 OCT 11; 31(19):R1208-+
Freeman EE, Chamberlin GC, McMahon DE, Hruza GJ, Wall D, Meah N, Sinclair R, Balogh EA, Feldman SR, Lowes MA, Marzano AV, Naik HB, Castelo-Soccio L, Lara-Corrales I, Cordoro KM, Mahil SK, Griffiths CEM, Smith CH, Irvine AD, Spuls PI, Flohr C, French LE
Show All Authors

Dermatology COVID-19 Registries Updates and Future Directions

DERMATOLOGIC CLINICS 2021 OCT; 39(4):575-585
Zhang SY, Harschnitz O, Studer L, Casanova JL
Show All Authors

Neuron-intrinsic immunity to viruses in mice and humans

CURRENT OPINION IN IMMUNOLOGY 2021 OCT; 72(?):309-317
Viral encephalitis is a major neglected medical problem. Host defense mechanisms against viral infection of the central nervous system (CNS) have long remained unclear. The few previous studies of CNS-specific immunity to viruses in mice in vivo and humans in vitro have focused on the contributions of circulating leukocytes, resident microglial cells and astrocytes, with neurons long considered passive victims of viral infection requiring protection from extrinsic antiviral mechanisms. The last decade has witnessed the gradual emergence of the notion that neurons also combat viruses through cell-intrinsic mechanisms. Forward genetic approaches in humans have shown that monogenic inborn errors of TLR3, IFN-alpha/beta, or snoRNA31 immunity confer susceptibility to herpes simplex virus 1 (HSV-1) infection of the forebrain, whereas inborn errors of DBR1 underlie brainstem infections due to various viruses, including HSV-1. The study of human pluripotent stem cell (hPSC)-derived CNS-resident cells has unraveled known (i.e. TLR3-dependent IFN-alpha/beta immunity) and new (i.e. snoRNA31-dependent or DBR1-dependent immunity) cell-intrinsic antiviral mechanisms operating in neurons. Reverse genetic approaches in mice have confirmed that some known antiviral mechanisms also operate in mouse neurons (e.g. TLR3 and IFN-alpha/beta immunity). The search for human inborn errors of immunity (IEIs) underlying various forms of viral encephalitis, coupled with mouse models in vivo, and hPSC-based culture models of CNS and peripheral nervous system cells and organoids in vitro, should shed further light on the cell-specific and tissue-specific mechanisms of host defense against viruses in the human brain.