Skip to main content

Publications search

Found 37048 matches. Displaying 731-740
Gedman G, Haase B, Durieux G, Biegler MT, Fedrigo O, Jarvis ED
Show All Authors

As above, so below: Whole transcriptome profiling demonstrates strong molecular similarities between avian dorsal and ventral pallial subdivisions

JOURNAL OF COMPARATIVE NEUROLOGY 2021 AUG; 529(12):3222-3246
Over the last two decades, beginning with the Avian Brain Nomenclature Forum in 2000, major revisions have been made to our understanding of the organization and nomenclature of the avian brain. However, there are still unresolved questions on avian pallial organization, particularly whether the cells above the vestigial ventricle represent distinct populations to those below it or similar populations. To test these two hypotheses, we profiled the transcriptomes of the major avian pallial subdivisions dorsal and ventral to the vestigial ventricle boundary using RNA sequencing and a new zebra finch genome assembly containing about 22,000 annotated, complete genes. We found that the transcriptomes of neural populations above and below the ventricle were remarkably similar. Each subdivision in dorsal pallium (Wulst) had a corresponding molecular counterpart in the ventral pallium (dorsal ventricular ridge). In turn, each corresponding subdivision exhibited shared gene co-expression modules that contained gene sets enriched in functional specializations, such as anatomical structure development, synaptic transmission, signaling, and neurogenesis. These findings are more in line with the continuum hypothesis of avian brain subdivision organization above and below the vestigial ventricle space, with the pallium as a whole consisting of four major cell populations (intercalated pallium, mesopallium, hyper-nidopallium, and arcopallium) instead of seven (hyperpallium apicale, interstitial hyperpallium apicale, intercalated hyperpallium, hyperpallium densocellare, mesopallium, nidopallium, and arcopallium). We suggest adopting a more streamlined hierarchical naming system that reflects the robust similarities in gene expression, neural connectivity motifs, and function. These findings have important implications for our understanding of overall vertebrate brain evolution.
Chen CC, Chen BR, Wang YN, Curman P, Beilinson HA, Brecht RM, Liu CC, Farrell RJ, de Juan-Sanz J, Charbonnier LM, Kajimura S, Ryan TA, Schatz DG, Chatila TA, Wikstrom JD, Tyler JK, Sleckman BP
Show All Authors

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination

JOURNAL OF EXPERIMENTAL MEDICINE 2021 AUG 2; 218(8):? Article e20201708
A whole-genome CRISPR/Cas9 screen identified ATP2A2, the gene encoding the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 protein, as being important for V(D)J recombination. SERCAs are ER transmembrane proteins that pump Ca2+ from the cytosol into the ER lumen to maintain the ER Ca2+ reservoir and regulate cytosolic Ca2+-dependent processes. In preB cells, loss of SERCA2 leads to reduced V(D)J recombination kinetics due to diminished RAG-mediated DNA cleavage. SERCA2 deficiency in B cells leads to increased expression of SERCA3, and combined loss of SERCA2 and SERCA3 results in decreased ER Ca2+ levels, increased cytosolic Ca2+ levels, reduction in RAG1 and RAG2 gene expression, and a profound block in V(D)J recombination. Mice with B cells deficient in SERCA2 and humans with Darier disease, caused by heterozygous ATP2A2 mutations, have reduced numbers of mature B cells. We conclude that SERCA proteins modulate intracellular Ca2+ levels to regulate RAG1 and RAG2 gene expression and V(D)J recombination and that defects in SERCA functions cause lymphopenia.
Sten TH, Li RF, Otopalik A, Ruta V
Show All Authors

Sexual arousal gates visual processing during Drosophila courtship

NATURE 2021 JUL 22; 595(7868):549-553
Long-lasting internal arousal states motivate and pattern ongoing behaviour, enabling the temporary emergence of innate behavioural programs that serve the needs of an animal, such as fighting, feeding, and mating. However, how internal states shape sensory processing or behaviour remains unclear. In Drosophila, male flies perform a lengthy and elaborate courtship ritual that is triggered by the activation of sexually dimorphic P1 neurons(1-5), during which they faithfully follow and sing to a female(6,7). Here, by recording from males as they court a virtual 'female', we gain insight into how the salience of visual cues is transformed by a male's internal arousal state to give rise to persistent courtship pursuit. The gain of LC10a visual projection neurons is selectively increased during courtship, enhancing their sensitivity to moving targets. A concise network model indicates that visual signalling through the LC10a circuit, once amplified by P1-mediated arousal, almost fully specifies a male's tracking of a female. Furthermore, P1 neuron activity correlates with ongoing fluctuations in the intensity of a male's pursuit to continuously tune the gain of the LC10a pathway. Together, these results reveal how a male's internal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.
Blachere NE, Hacisuleyman E, Darnell RB
Show All Authors

Vaccine Breakthrough Infections with SARS-CoV-2 Variants REPLY

NEW ENGLAND JOURNAL OF MEDICINE 2021 JUL 8; 385(2):?
Lavin RC, Johnson C, Ahn YM, Kremiller KM, Sherwood M, Patel JS, Pan Y, Russo R, MacGilvary NJ, Giacalone D, Kevorkian YL, Zimmerman MD, Glickman JF, Freundlich JS, Tan SM
Show All Authors

Targeting Mycobacterium tuberculosis response to environmental cues for the development of effective antitubercular drugs

PLOS BIOLOGY 2021 JUL; 19(7):? Article e3001355
Sensing and response to environmental cues, such as pH and chloride (Cl-), is critical in enabling Mycobacterium tuberculosis (Mtb) colonization of its host. Utilizing a fluorescent reporter Mtb strain in a chemical screen, we have identified compounds that dysregulate Mtb response to high Cl- levels, with a subset of the hits also inhibiting Mtb growth in host macrophages. Structure-activity relationship studies on the hit compound "C6," or 2-(4-((2-(ethylthio)pyrimidin-5-yl)methyl)piperazin-1-yl)benzo[d]oxazole, demonstrated a correlation between compound perturbation of Mtb Cl- response and inhibition of bacterial growth in macrophages. C6 accumulated in both bacterial and host cells, and inhibited Mtb growth in cholesterol media, but not in rich media. Subsequent examination of the Cl- response of Mtb revealed an intriguing link with bacterial growth in cholesterol, with increased transcription of several Cl--responsive genes in the simultaneous presence of cholesterol and high external Cl- concentration, versus transcript levels observed during exposure to high external Cl- concentration alone. Strikingly, oral administration of C6 was able to inhibit Mtb growth in vivo in a C3HeB/FeJ murine infection model. Our work illustrates how Mtb response to environmental cues can intersect with its metabolism and be exploited in antitubercular drug discovery.
Felix S, Handem S, Nunes S, Paulo AC, Candeias C, Valente C, Simoes AS, Almeida ST, Tavares DA, Brito-Avo A, de Lencastre H, Sa-Leao R
Show All Authors

Impact of private use of the 13-valent pneumococcal conjugate vaccine (PCV13) on pneumococcal carriage among Portuguese children living in urban and rural regions

VACCINE 2021 JUL 22; 39(32):4524-4533
In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was commercially available between 2010 and 2015, following a decade of private use of PCV7. We evaluated changes on serotype distribution and antimicrobial susceptibility of pneumococci carried by children living in two regions of Portugal (one urban and one rural). Three epidemiological periods were defined: pre-PCV13 (2009-2010), early-PCV13 (2011-2012), and late-PCV13 (2015-2016). Nasopharyngeal samples (n = 4,232) were obtained from children 0-6 years old attending day-care centers. Private use of PCVs was very high in both regions (>75%). Pneumococcal carriage remained stable and high over time (62.1%, 62.4% and 61.6% (p = 0.909) in the urban region; and 59.8%, 62.8%, 59.5% (p = 0.543) in the rural region). Carriage of PCV7 serotypes remained low (5.3%, 7.8% and 4.3% in the urban region; and 2.5%, 3.7% and 4.8% in the rural region). Carriage of PCV13 serotypes not targeted by PCV7 decreased in both the urban (16.4%, 7.3%, and 1.6%; p < 0.001) and rural regions (13.2%, 7.8%, and 1.9%; p < 0.001). This decline was mostly attributable to serotype 19A (14.1%, 4.4% and 1.3% in the urban region; and 11.1%, 3.6% and 0.8% in the rural region, both p < 0.001). Serotype 3 declined over time in the urban region (10.1%, 4.4%, 0.8%; p < 0.001) and had no obvious trend in the rural region (4.2%, 6.7%, 2.4%; p = 0.505). Serotype 6C decreased in both regions while serotypes 11D, 15A/B/C, 16F, 21, 22F, 23A/B, 24F, 35F, and NT were the most prevalent in the late-PCV13 period. Intermediate resistance to penicillin and non-susceptibility to erythromycin decreased significantly in both regions (19.5%, 13.3%, and 9.3%; and 25.4%, 25.9%, and 13.4%; both p < 0.001, respectively in the urban region; and 12.4%, 11.1%, and 2.8% (p < 0.001); and 15.3%, 14.7%, and 9.2% (p = 0.037), respectively, in the rural region). In conclusion, private use of PCV13 led to significant changes on the pneumococcal population carried by children in Portugal. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
Huber T, Goldman O, Epstein AE, Stella G, Sakmar TP
Show All Authors

Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C

BIOPHYSICAL JOURNAL 2021 JUL 20; 120(14):2927-2942
A mainstay of personal protective equipment during the coronavirus disease 2019 pandemic is the N95 filtering facepiece respirator. N95 respirators are commonly used to protect healthcare workers from respiratory pathogens, including the novel coronavirus severe acute respiratory syndrome coronavirus 2, and are increasingly employed by other frontline workers and the general public. Under routine circumstances, these masks are disposable, single-use items, but extended use and reuse practices have been broadly enacted to alleviate critical supply shortages during the coronavirus disease 2019 pandemic. Although extended-time single use presents a low risk of pathogen transfer, repeated donning and doffing of potentially contaminated masks presents increased risk of pathogen transfer. Therefore, efficient and safe decontamination methods for N95 masks are needed to reduce the risk of reuse and mitigate local supply shortages. Here, we review the available literature concerning use of germicidal ultraviolet-C (UV-C) light to decontaminate N95 masks. We propose a practical method for repeated point-of-use decontamination using commercially available UV-C cross-linker boxes from molecular biology laboratories to expose each side of the mask to 800-1200 mJ/cm(2) of UV-C. We measure the dose that penetrated to the interior of the respirators and model the potential germicidal action on coronaviruses. Our experimental results, in combination with modeled data, suggest that such a UV-C treatment cycle should induce a >3-log-order reduction in viral bioburden on the surface of the respirators and a 2-log-order reduction throughout the interior. We find that a dose 50-fold greater does not impair filtration or fit of 3M 8210 N95 masks, indicating that decontamination can be performed repeatedly. As such, UV-C germicidal irradiation is a practical strategy for small-scale point-of-use decontamination of N95s.
Brivanlou AH, Rivron N, Gleicher N
Show All Authors

How will our understanding of human development evolve over the next 10 years

NATURE COMMUNICATIONS 2021 JUL 29; 12(1):? Article 4614
In the next 10 years, the continued exploration of human embryology holds promise to revolutionize regenerative and reproductive medicine with important societal consequences. In this Comment we speculate on the evolution of recent advances made and describe emerging technologies for basic research, their potential clinical applications, and, importantly, the ethical frameworks in which they must be considered.
Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Da Silva ADD, Dias SDG, da Silva CD, Ferreira AC, Mattos M, Pao CRR, de Freitas CS, Soares VC, Hoelz LVB, Fernandes TVA, Branco FSC, Bastos MM, Boechat N, Saraiva FB, Ferreira MA, Jockusch S, Wang XT, Tao CAJ, Chien MC, Xie W, Patel D, Garzia A, Tuschl T, Russo JJ, Rajoli RKR, Pedrosa CSG, Vitoria G, Souza LRQ, Goto-Silva L, Guimaraes MZ, Rehen SK, Owen A, Bozza FA, Bou-Habib DC, Ju JY, Bozza PT, Souza TML
Show All Authors

In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY 2021 JUL; 76(7):1874-1885
Background: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, Like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. Methods: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. Results: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 mu M, respectively. Although Less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at C-max after administration of the approved dose to humans. Conclusions: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.
Diab NS, Barish S, Dong WL, Zhao SJ, Allington G, Yu XB, Kahle KT, Brueckner M, Jin SC
Show All Authors

Molecular Genetics and Complex Inheritance of Congenital Heart Disease

GENES 2021 JUL; 12(7):? Article 1020
Congenital heart disease (CHD) is the most common congenital malformation and the leading cause of mortality therein. Genetic etiologies contribute to an estimated 90% of CHD cases, but so far, a molecular diagnosis remains unsolved in up to 55% of patients. Copy number variations and aneuploidy account for similar to 23% of cases overall, and high-throughput genomic technologies have revealed additional types of genetic variation in CHD. The first CHD risk genotypes identified through high-throughput sequencing were de novo mutations, many of which occur in chromatin modifying genes. Murine models of cardiogenesis further support the damaging nature of chromatin modifying CHD mutations. Transmitted mutations have also been identified through sequencing of population scale CHD cohorts, and many transmitted mutations are enriched in cilia genes and Notch or VEGF pathway genes. While we have come a long way in identifying the causes of CHD, more work is required to end the diagnostic odyssey for all CHD families. Complex genetic explanations of CHD are emerging but will require increasingly sophisticated analysis strategies applied to very large CHD cohorts before they can come to fruition in providing molecular diagnoses to genetically unsolved patients. In this review, we discuss the genetic architecture of CHD and biological pathways involved in its pathogenesis.