Skip to main content

Publications search

Found 37173 matches. Displaying 81-90
Dunlap G, Wagner A, Meednu N, Wang RQ, Zhang F, Ekabe JC, Jonsson AH, Wei K, ...
Show All Authors

Clonal associations between lymphocyte subsets and functional states in rheum...

NATURE COMMUNICATIONS 2024 JUN 11; 15(1):? Article 4991
Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA. Activated B cells and T cells accumulate within joints of patients with rheumatoid arthritis. Here, the authors use single-cell transcriptome and repertoire profiling to identify clonally expanded synovial B cells and T cells and define their phenotypes and predicted cell-cell interactions.
Marin-Valencia I, Kocabas A, Rodriguez-Navas C, Miloushev VZ, González-Rodríg...
Show All Authors

Imaging brain glucose metabolism in vivo reveals propionate as a major anaple...

CELL METABOLISM 2024 JUN 4; 36(6):?
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo . This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Leung NY, Xu CW, Li JSS, Ganguly A, Meyerhof GT, Regimbald-Dumas Y, Lane EA, ...
Show All Authors

Gut tumors in flies alter the taste valence of an anti-tumorigenic bitter com...

CURRENT BIOLOGY 2024 JUN 17; 34(12):?
The sense of taste is essential for survival, as it allows animals to distinguish between foods that are nutritious from those that are toxic. However, innate responses to different tastants can be modulated or even reversed under pathological conditions. Here, we examined whether and how the internal status of an animal impacts taste valence by using Drosophila models of hyperproliferation in the gut. In all three models where we expressed proliferation -inducing transgenes in intestinal stem cells (ISCs), hyperproliferation of ISCs caused a tumor -like phenotype in the gut. While tumor -bearing flies had no deficiency in overall food intake, strikingly, they exhibited an increased gustatory preference for aristolochic acid (ARI), which is a bitter and normally aversive plant -derived chemical. ARI had anti -tumor effects in all three of our gut hyperproliferation models. For other aversive chemicals we tested that are bitter but do not have anti -tumor effects, gut tumors did not affect avoidance behaviors. We demonstrated that bitter -sensing gustatory receptor neurons (GRNs) in tumor -bearing flies respond normally to ARI. Therefore, the internal pathology of gut hyperproliferation affects neural circuits that determine taste valence postsynaptic to GRNs rather than altering taste identity by GRNs. Overall, our data suggest that increased consumption of ARI may represent an attempt at self -medication. Finally, although ARI's potential use as a chemotherapeutic agent is limited by its known toxicity in the liver and kidney, our findings suggest that tumor -bearing flies might be a useful animal model to screen for novel anti -tumor drugs.
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV
Show All Authors

PD-1 signaling in neonates restrains CD8+T cell function and protects against...

MUCOSAL IMMUNOLOGY 2024 JUN; 17(3):476-490
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-in fl ammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1 -/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-speci fi c CD8 + T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8 + T cells had reduced interferon-gamma (IFN- gamma), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1 -/- neonatal CD8 + T cells had markedly increased production of IFN- gamma and granzyme B compared with B6 neonates. Pdcd1 -/- neonates had increased acute pathology with HMPV or in fl uenza. Pdcd1 -/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8 + T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8 + T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8 + T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.
Faria NA, Touret T, Simoes AS, Palos C, Bispo S, Cristino JM, Ramirez M, Carr...
Show All Authors

Genomic insights into the expansion of carbapenemresistant Klebsiella pneumon...

JOURNAL OF HOSPITAL INFECTION 2024 JUN; 148(?):62-76
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) are a public health concern, causing infections with a high mortality rate, limited therapeutic options and challenging infection control strategies. In Portugal, the CR-KP rate has increased sharply, but the factors associated with this increase are poorly explored. In order to address this question, phylogenetic and resistome analysis were used to compare the draft genomes of 200 CR-KP isolates collected in 2017-2019 from five hospitals in the Lisbon region, Portugal. Most CR-KP belonged to sequence type (ST) 13 (29%), ST17 (15%), ST348 (13%), ST231 (12%) and ST147 (7%). Carbapenem resistance was conferred mostly by the presence of KPC-3 (74%) or OXA-181 (18%), which were associated with IncF/IncN and IncX plasmids, respectively. Almost all isolates were multi -drug resistant, harbouring resistance determinants to aminoglycosides, beta-lactams, trimethoprim, fosfomycin, quinolones and sulphonamides. In addition, 11% of isolates were resistant to colistin. Colonizing and infecting isolates were highly related, and most colonized patients (89%) reported a previous hospitalization. Moreover, among the 171 events of cross -dissemination identified by core genome multilocus sequence typing data analysis (fewer than five allelic differences), 41 occurred between different hospitals and 130 occurred within the same hospital. The results suggest that CR-KP dissemination in the Lisbon region results from acquisition of carbapenemases in mobile genetic elements, influx of CR-KP into the hospitals by colonized ambulatory patients, and transmission of CR-KP within and between hospitals. Prudent use of carbapenems, patient screening at hospital entry, and improvement of infection control are needed to decrease the burden of CR-KP infection in Portugal. 2024 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Nacev BA, Dabas Y, Paul MR, Pacheco C, Mitchener M, Perez Y, Fang Y, Soshnev ...
Show All Authors

Cancer-associated Histone H3 N-terminal arginine mutations disrupt PRC2 activ...

NATURE COMMUNICATIONS 2024 JUN 17; 15(1):? Article 5155
Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype. Missense mutations in histones can drive oncogenesis and disrupt chromatin, but the associated mechanisms for many such mutations remain poorly understood. Here, the authors show that cancer-associated histone mutations at arginines in the H3 N-terminal tail disrupt repressive chromatin domains, alter gene expression, and in one case impair differentiation via reduction of PRC2 function.
Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, ...
Show All Authors

Search for pair production of scalar and vector leptoquarks decaying to muons...

PHYSICAL REVIEW D 2024 JUN 4; 109(11):? Article 112003
A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at root s = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb(-1). No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.
Rincón TC, Kapoor T, Keeffe JR, Simonelli L, Hoffmann HH, Agudelo M, Jurado A...
Show All Authors

Human antibodies in Mexico and Brazil neutralizing tick-borne flaviviruses

CELL REPORTS 2024 JUN 25; 43(6):? Article 114298
Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito -borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.
Darling C, Kumar S, Alexandrov Y, de Faye J, Santiago JA, Rydlová A, Bugeon L, Dallman MJ, Behrens AJ, French PMW, McGinty J
Show All Authors

Optical projection tomography implemented for accessibility and low cost (OPTImAL)

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2024 JUN 3; 382(2274):? Article 20230101
Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li LC, Wang W, Végvári A, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao VCY, Roussarie JP
Show All Authors

A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons

BRAIN 2024 JUN 11; 147(7):2384-2399
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease.The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease. By modelling neurons from the entorhinal cortex in silico, Rodriguez-Rodriguez et al. obtain evidence suggesting that the proto-oncogene DEK is likely to contribute to the vulnerability of these neurons to Alzheimer's disease. Reducing DEK levels in these neurons in vitro leads to changes reminiscent of early Alzheimer's disease pathology.