.custom-subheader { font-family: Roboto, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 17px; font-weight: 600; line-height: 1.5em; margin-top: 1.5em; margin-bottom: 1em; }
Skip to main content
Displaying 136 of 2939 articles.
Thomas Tuschl has devoted his career to making discoveries that bridge the gap between bench and business—and have resulted in entirely new classes of drugs.

A novel sequencing technique reveals a genetic trick TB may be using to evade the immune system and resist antibiotics.

By focusing on the emergent features of cell collectives, instead of individual cells, scientists forge a new path for understanding how organs develop their architecture.   

In developing bird skin, immature cells move around and form intricate patterns. Scientists are zeroing in on the mechanical forces guiding the process.

Linker histone H1 appears capable of distinguishing between single-stranded and double-stranded DNA, suggesting that its role in maintaining our genomes extends far beyond that of keeping chromosomes compact.

The compound attacks MRSA, C. diff, and several other deadly pathogens. Its discovery demonstrates the power of combining computational biology, genetic sequencing, and synthetic chemistry to study bacterial evolution.

She receives the honor for elucidating mechanisms of telomere protection and genome maintenance.

A new study reveals how the drug fidaxomicin selectively targets a dangerous pathogen without causing harm to beneficial bacteria. The findings could inform the development of new narrow-spectrum antibiotics for treating other types of infection.

Protein folding diseases, from Alzheimer's to Gaucher's, may one day be treated by a unique class of protein corrector molecules that are already helping manage cystic fibrosis.  

Increasingly, hospitalized patients contract infections that evade current antibiotics including colistin, long used as a last treatment option. The discovery of a new colistin variant might make it possible to outmaneuver these pathogens.